RIMI - Repository of the Institute for Medical Research
Institute for Medical Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMI
  • Institut za medicinska istraživanja
  • Radovi istraživača / Researchers' publications
  • View Item
  •   RIMI
  • Institut za medicinska istraživanja
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds

Authorized Users Only
2015
Authors
Dordević, Verica
Balanc, Bojana
Belscak-Cvitanović, Ana
Lević, Steva
Trifković, Kata
Kalušević, Ana
Kostić, Ivana
Komes, Draženka
Bugarski, Branko
Nedović, Viktor
Article (Published version)
Metadata
Show full item record
Abstract
The food industry expects increasingly complex properties (such as delayed release, stability, thermal protection, and suitable sensorial profile) from food ingredients, which often would not be able to be achieved without microencapsulation. This paper presents the state of the art in encapsulation technology for delivery of bioactive compounds to food. It reviews common encapsulation technologies (emphasizing their advantages and limitations) versus novel, interesting approaches in emerging technologies. This review includes a presentation of benefits resulting from the use of microencapsulated ingredients in the food industry; these benefits are going to be illustrated via few case studies bringing innovative processing. Spray drying has been used for more than 60 years to protect flavor oils against degradation/oxidation/evaporation, but melt dispersion technique has been used lately to effectively stabilize an aroma compound. Microgels produced by extrusion and emulsification tech...niques are considered for delivering synergistic antioxidant effects of plant extract polyphenols, their off-taste masking, and improved handling. Apart from microgels, microemulsions (produced by microfluidization or micelle formation techniques) are taken into account for entrapment of extracts containing polyphenols and essential oils. Innovative and interesting coacervation processes are depicted here as they facilitate the commercialization of coacervated food ingredients. Liposomes are gaining increasing attention in the food sector as they can provide good stability even in a water surrounding and also targeted delivery. The new scalable manufacturing protocols for the production of liposomes evolved in recent years (e.g., proliposome method) are presented here. Fluidized bed technology has been offering a versatile possibility to produce encapsulates which should release ingredients at the right place and the right time. Complex systems such as lipids in hydrogels are newly developed structures for controlled release of bioactive compounds. Finally, the effect encapsulates have when incorporated into real food products will be discussed, in particular with regard to the production of innovative functional food products. As an example, textural, sensorial, and physical quality assessment of chocolates enriched with encapsulated polyphenolic antioxidants from yarrow (Achillea millefolium L.) will be reviewed.

Keywords:
Encapsulation / Bioactive compounds / Antioxidants / Functional food
Source:
Food Engineering Reviews, 2015, 7, 4, 452-490
Publisher:
  • Springer, New York
Funding / projects:
  • COST action [FA1001]
  • Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness (RS-46010)
  • Ministry of Science, Education and Sports, Republic of Croatia [058-0000000-3470]

DOI: 10.1007/s12393-014-9106-7

ISSN: 1866-7910

WoS: 000364028100006

Scopus: 2-s2.0-84946488009
[ Google Scholar ]
290
202
URI
http://rimi.imi.bg.ac.rs/handle/123456789/620
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
Institut za medicinska istraživanja
TY  - JOUR
AU  - Dordević, Verica
AU  - Balanc, Bojana
AU  - Belscak-Cvitanović, Ana
AU  - Lević, Steva
AU  - Trifković, Kata
AU  - Kalušević, Ana
AU  - Kostić, Ivana
AU  - Komes, Draženka
AU  - Bugarski, Branko
AU  - Nedović, Viktor
PY  - 2015
UR  - http://rimi.imi.bg.ac.rs/handle/123456789/620
AB  - The food industry expects increasingly complex properties (such as delayed release, stability, thermal protection, and suitable sensorial profile) from food ingredients, which often would not be able to be achieved without microencapsulation. This paper presents the state of the art in encapsulation technology for delivery of bioactive compounds to food. It reviews common encapsulation technologies (emphasizing their advantages and limitations) versus novel, interesting approaches in emerging technologies. This review includes a presentation of benefits resulting from the use of microencapsulated ingredients in the food industry; these benefits are going to be illustrated via few case studies bringing innovative processing. Spray drying has been used for more than 60 years to protect flavor oils against degradation/oxidation/evaporation, but melt dispersion technique has been used lately to effectively stabilize an aroma compound. Microgels produced by extrusion and emulsification techniques are considered for delivering synergistic antioxidant effects of plant extract polyphenols, their off-taste masking, and improved handling. Apart from microgels, microemulsions (produced by microfluidization or micelle formation techniques) are taken into account for entrapment of extracts containing polyphenols and essential oils. Innovative and interesting coacervation processes are depicted here as they facilitate the commercialization of coacervated food ingredients. Liposomes are gaining increasing attention in the food sector as they can provide good stability even in a water surrounding and also targeted delivery. The new scalable manufacturing protocols for the production of liposomes evolved in recent years (e.g., proliposome method) are presented here. Fluidized bed technology has been offering a versatile possibility to produce encapsulates which should release ingredients at the right place and the right time. Complex systems such as lipids in hydrogels are newly developed structures for controlled release of bioactive compounds. Finally, the effect encapsulates have when incorporated into real food products will be discussed, in particular with regard to the production of innovative functional food products. As an example, textural, sensorial, and physical quality assessment of chocolates enriched with encapsulated polyphenolic antioxidants from yarrow (Achillea millefolium L.) will be reviewed.
PB  - Springer, New York
T2  - Food Engineering Reviews
T1  - Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds
EP  - 490
IS  - 4
SP  - 452
VL  - 7
DO  - 10.1007/s12393-014-9106-7
UR  - conv_3629
ER  - 
@article{
author = "Dordević, Verica and Balanc, Bojana and Belscak-Cvitanović, Ana and Lević, Steva and Trifković, Kata and Kalušević, Ana and Kostić, Ivana and Komes, Draženka and Bugarski, Branko and Nedović, Viktor",
year = "2015",
abstract = "The food industry expects increasingly complex properties (such as delayed release, stability, thermal protection, and suitable sensorial profile) from food ingredients, which often would not be able to be achieved without microencapsulation. This paper presents the state of the art in encapsulation technology for delivery of bioactive compounds to food. It reviews common encapsulation technologies (emphasizing their advantages and limitations) versus novel, interesting approaches in emerging technologies. This review includes a presentation of benefits resulting from the use of microencapsulated ingredients in the food industry; these benefits are going to be illustrated via few case studies bringing innovative processing. Spray drying has been used for more than 60 years to protect flavor oils against degradation/oxidation/evaporation, but melt dispersion technique has been used lately to effectively stabilize an aroma compound. Microgels produced by extrusion and emulsification techniques are considered for delivering synergistic antioxidant effects of plant extract polyphenols, their off-taste masking, and improved handling. Apart from microgels, microemulsions (produced by microfluidization or micelle formation techniques) are taken into account for entrapment of extracts containing polyphenols and essential oils. Innovative and interesting coacervation processes are depicted here as they facilitate the commercialization of coacervated food ingredients. Liposomes are gaining increasing attention in the food sector as they can provide good stability even in a water surrounding and also targeted delivery. The new scalable manufacturing protocols for the production of liposomes evolved in recent years (e.g., proliposome method) are presented here. Fluidized bed technology has been offering a versatile possibility to produce encapsulates which should release ingredients at the right place and the right time. Complex systems such as lipids in hydrogels are newly developed structures for controlled release of bioactive compounds. Finally, the effect encapsulates have when incorporated into real food products will be discussed, in particular with regard to the production of innovative functional food products. As an example, textural, sensorial, and physical quality assessment of chocolates enriched with encapsulated polyphenolic antioxidants from yarrow (Achillea millefolium L.) will be reviewed.",
publisher = "Springer, New York",
journal = "Food Engineering Reviews",
title = "Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds",
pages = "490-452",
number = "4",
volume = "7",
doi = "10.1007/s12393-014-9106-7",
url = "conv_3629"
}
Dordević, V., Balanc, B., Belscak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, A., Kostić, I., Komes, D., Bugarski, B.,& Nedović, V.. (2015). Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. in Food Engineering Reviews
Springer, New York., 7(4), 452-490.
https://doi.org/10.1007/s12393-014-9106-7
conv_3629
Dordević V, Balanc B, Belscak-Cvitanović A, Lević S, Trifković K, Kalušević A, Kostić I, Komes D, Bugarski B, Nedović V. Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. in Food Engineering Reviews. 2015;7(4):452-490.
doi:10.1007/s12393-014-9106-7
conv_3629 .
Dordević, Verica, Balanc, Bojana, Belscak-Cvitanović, Ana, Lević, Steva, Trifković, Kata, Kalušević, Ana, Kostić, Ivana, Komes, Draženka, Bugarski, Branko, Nedović, Viktor, "Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds" in Food Engineering Reviews, 7, no. 4 (2015):452-490,
https://doi.org/10.1007/s12393-014-9106-7 .,
conv_3629 .

DSpace software copyright © 2002-2015  DuraSpace
About RIMI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMI | Send Feedback

OpenAIRERCUB