RIMI - Repository of the Institute for Medical Research
Institute for Medical Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMI
  • Institut za medicinska istraživanja
  • Radovi istraživača / Researchers' publications
  • View Item
  •   RIMI
  • Institut za medicinska istraživanja
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Discovery of 1-Benzhydryl-Piperazine-Based HDAC Inhibitors with Anti-Breast Cancer Activity: Synthesis, Molecular Modeling, In Vitro and In Vivo Biological Evaluation

Thumbnail
2022
Discovery_of_1-Benzhydryl-Piperazine-Based_HDAC_Inhibitors_pub_2022.pdf (5.574Mb)
Authors
Ružić, Dušan
Ellinger, Bernhard
Đoković, Nemanja
Santibanez, Juan
Gul, Sheraz
Beljkaš, Milan
Đurić, Ana
Ganesan, Arasu
Pavić, Aleksandar
Srdić-Rajić, Tatjana
Petković, Miloš
Nikolić, Katarina
Article (Published version)
Metadata
Show full item record
Abstract
Abstract Isoform-selective histone deacetylase (HDAC) inhibition is promoted as a rational strategy to develop safer anti-cancer drugs compared to non-selective HDAC inhibitors. Despite this presumed benefit, considerably more non-selective HDAC inhibitors have undergone clinical trials. In this report, we detail the design and discovery of potent HDAC inhibitors, with 1-benzhydryl piperazine as a surface recognition group, that differ in hydrocarbon linker. In vitro HDAC screening identified two selective HDAC6 inhibitors with nanomolar IC50 values, as well as two non-selective nanomolar HDAC inhibitors. Structure-based molecular modeling was employed to study the influence of linker chemistry of synthesized inhibitors on HDAC6 potency. The breast cancer cell lines (MDA-MB-231 and MCF-7) were used to evaluate compound-mediated in vitro anti-cancer, anti-migratory, and anti-invasive activities. Experiments on the zebrafish MDA-MB-231 xenograft model revealed that a novel non-selective... HDAC inhibitor with a seven-carbon-atom linker exhibits potent anti-tumor, anti-metastatic, and anti-angiogenic effects when tested at low micromolar concentrations.

Keywords:
1-benzhydryl piperazine / anti-metastatic effect / breast cancer / drug discovery / histone deacetylases / hydroxamic acid / zebrafish xenograft model
Source:
Pharmaceutics, 2022, 14, 12, 2600-
Publisher:
  • Multidisciplinary Digital Publishing Institute (MDPI)
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200161 (University of Belgrade, Faculty of Pharmacy) (RS-200161)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) (RS-200042)
  • British Scholarship Trust Foundation for sup- port in Short term research grant at the University of East Anglia, Norwich, United Kingdom
  • OST-Action CM1406 “Epigenetic Chemical Biol- ogy” (EpiChemBio)

DOI: 10.3390/pharmaceutics14122600

ISSN: 1999-4923

[ Google Scholar ]
URI
http://rimi.imi.bg.ac.rs/handle/123456789/1271
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
Institut za medicinska istraživanja
TY  - JOUR
AU  - Ružić, Dušan
AU  - Ellinger, Bernhard
AU  - Đoković, Nemanja
AU  - Santibanez, Juan
AU  - Gul, Sheraz
AU  - Beljkaš, Milan
AU  - Đurić, Ana
AU  - Ganesan, Arasu
AU  - Pavić, Aleksandar
AU  - Srdić-Rajić, Tatjana
AU  - Petković, Miloš
AU  - Nikolić, Katarina
PY  - 2022
UR  - http://rimi.imi.bg.ac.rs/handle/123456789/1271
AB  - Abstract  Isoform-selective histone deacetylase (HDAC) inhibition is promoted as a rational strategy to develop safer anti-cancer drugs compared to non-selective HDAC inhibitors. Despite this presumed benefit, considerably more non-selective HDAC inhibitors have undergone clinical trials. In this report, we detail the design and discovery of potent HDAC inhibitors, with 1-benzhydryl piperazine as a surface recognition group, that differ in hydrocarbon linker. In vitro HDAC screening identified two selective HDAC6 inhibitors with nanomolar IC50 values, as well as two non-selective nanomolar HDAC inhibitors. Structure-based molecular modeling was employed to study the influence of linker chemistry of synthesized inhibitors on HDAC6 potency. The breast cancer cell lines (MDA-MB-231 and MCF-7) were used to evaluate compound-mediated in vitro anti-cancer, anti-migratory, and anti-invasive activities. Experiments on the zebrafish MDA-MB-231 xenograft model revealed that a novel non-selective HDAC inhibitor with a seven-carbon-atom linker exhibits potent anti-tumor, anti-metastatic, and anti-angiogenic effects when tested at low micromolar concentrations.
PB  - Multidisciplinary Digital Publishing Institute (MDPI)
T2  - Pharmaceutics
T1  - Discovery of 1-Benzhydryl-Piperazine-Based HDAC Inhibitors with Anti-Breast Cancer Activity: Synthesis, Molecular Modeling, In Vitro and In Vivo Biological Evaluation
IS  - 12
SP  - 2600
VL  - 14
DO  - 10.3390/pharmaceutics14122600
ER  - 
@article{
author = "Ružić, Dušan and Ellinger, Bernhard and Đoković, Nemanja and Santibanez, Juan and Gul, Sheraz and Beljkaš, Milan and Đurić, Ana and Ganesan, Arasu and Pavić, Aleksandar and Srdić-Rajić, Tatjana and Petković, Miloš and Nikolić, Katarina",
year = "2022",
abstract = "Abstract  Isoform-selective histone deacetylase (HDAC) inhibition is promoted as a rational strategy to develop safer anti-cancer drugs compared to non-selective HDAC inhibitors. Despite this presumed benefit, considerably more non-selective HDAC inhibitors have undergone clinical trials. In this report, we detail the design and discovery of potent HDAC inhibitors, with 1-benzhydryl piperazine as a surface recognition group, that differ in hydrocarbon linker. In vitro HDAC screening identified two selective HDAC6 inhibitors with nanomolar IC50 values, as well as two non-selective nanomolar HDAC inhibitors. Structure-based molecular modeling was employed to study the influence of linker chemistry of synthesized inhibitors on HDAC6 potency. The breast cancer cell lines (MDA-MB-231 and MCF-7) were used to evaluate compound-mediated in vitro anti-cancer, anti-migratory, and anti-invasive activities. Experiments on the zebrafish MDA-MB-231 xenograft model revealed that a novel non-selective HDAC inhibitor with a seven-carbon-atom linker exhibits potent anti-tumor, anti-metastatic, and anti-angiogenic effects when tested at low micromolar concentrations.",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
journal = "Pharmaceutics",
title = "Discovery of 1-Benzhydryl-Piperazine-Based HDAC Inhibitors with Anti-Breast Cancer Activity: Synthesis, Molecular Modeling, In Vitro and In Vivo Biological Evaluation",
number = "12",
pages = "2600",
volume = "14",
doi = "10.3390/pharmaceutics14122600"
}
Ružić, D., Ellinger, B., Đoković, N., Santibanez, J., Gul, S., Beljkaš, M., Đurić, A., Ganesan, A., Pavić, A., Srdić-Rajić, T., Petković, M.,& Nikolić, K.. (2022). Discovery of 1-Benzhydryl-Piperazine-Based HDAC Inhibitors with Anti-Breast Cancer Activity: Synthesis, Molecular Modeling, In Vitro and In Vivo Biological Evaluation. in Pharmaceutics
Multidisciplinary Digital Publishing Institute (MDPI)., 14(12), 2600.
https://doi.org/10.3390/pharmaceutics14122600
Ružić D, Ellinger B, Đoković N, Santibanez J, Gul S, Beljkaš M, Đurić A, Ganesan A, Pavić A, Srdić-Rajić T, Petković M, Nikolić K. Discovery of 1-Benzhydryl-Piperazine-Based HDAC Inhibitors with Anti-Breast Cancer Activity: Synthesis, Molecular Modeling, In Vitro and In Vivo Biological Evaluation. in Pharmaceutics. 2022;14(12):2600.
doi:10.3390/pharmaceutics14122600 .
Ružić, Dušan, Ellinger, Bernhard, Đoković, Nemanja, Santibanez, Juan, Gul, Sheraz, Beljkaš, Milan, Đurić, Ana, Ganesan, Arasu, Pavić, Aleksandar, Srdić-Rajić, Tatjana, Petković, Miloš, Nikolić, Katarina, "Discovery of 1-Benzhydryl-Piperazine-Based HDAC Inhibitors with Anti-Breast Cancer Activity: Synthesis, Molecular Modeling, In Vitro and In Vivo Biological Evaluation" in Pharmaceutics, 14, no. 12 (2022):2600,
https://doi.org/10.3390/pharmaceutics14122600 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMI | Send Feedback

OpenAIRERCUB