Hydroxyurea Induces Bone Marrow Mesenchymal Stromal Cells Senescence and Modifies Cell Functionality In Vitro
Authors
Kapor, Sunčica
Vukotić, Milica

Subotički, Tijana

Đikić, Dragoslava
Mitrović-Ajtić, Olivera

Radojković, Milica
Čokić, Vladan

Santibanez, Juan

Article (Published version)
Metadata
Show full item recordAbstract
Hydroxyurea (HU) is an antineoplastic agent that functions as an antimetabolite compound by inhibiting the ribonucleotide reductase. HU acts mainly as a cytostatic drug that through DNA replication stress may trigger a premature senescence-like cell phenotype, though its influence on bone marrow-derived mesenchymal stem/stromal cell (BMMSC) functions has not elucidated yet. Our results indicate that HU inhibits the growth of human BMMSC alongside senescence-like changes in both morphology and replicative potential, provokes cell cycle arrest at the S phase without affecting cellular viability and induces the expression of senescence-associated β-galactosidase and p16INK4. Moreover, HU-induced senescent BMMSC, although they did not change MSC markers expression, exhibited reduced capacity osteogenic and adipogenic differentiation. Conversely, HU treatment increased immunoregulatory functions of BMMSC compared with untreated cells and determined by T-cell proliferation. Interestingly, HU... did not influence the capacity of BMMSC to induce monocytic myeloid-derived suppressor cells. Thus, these results suggest that HU improves the BMMSC functions on the T-cell inhibition and preserves their interaction with myeloid cell compartment. Mechanistically, BMMSC under HU treatment displayed a downregulation of mTOR and p38 MAPK signaling that may explain the reduced cell differentiation and increased immunomodulation activities. Together, the results obtained in this investigation suggest that HU by inducing senescence-like phenotype of BMMSC influences their cellular differentiation and immunoregulatory functions.
Keywords:
hydroxyurea / bone marrow mesenchymal stem cells / differentiation / immunosuppression / senescenceSource:
Journal of Personalized Medicine, 2021, 11, 11, 1048-Publisher:
- MDPI
Funding / projects:
Collections
Institution/Community
Institut za medicinska istraživanjaTY - JOUR AU - Kapor, Sunčica AU - Vukotić, Milica AU - Subotički, Tijana AU - Đikić, Dragoslava AU - Mitrović-Ajtić, Olivera AU - Radojković, Milica AU - Čokić, Vladan AU - Santibanez, Juan PY - 2021 UR - http://rimi.imi.bg.ac.rs/handle/123456789/1172 AB - Hydroxyurea (HU) is an antineoplastic agent that functions as an antimetabolite compound by inhibiting the ribonucleotide reductase. HU acts mainly as a cytostatic drug that through DNA replication stress may trigger a premature senescence-like cell phenotype, though its influence on bone marrow-derived mesenchymal stem/stromal cell (BMMSC) functions has not elucidated yet. Our results indicate that HU inhibits the growth of human BMMSC alongside senescence-like changes in both morphology and replicative potential, provokes cell cycle arrest at the S phase without affecting cellular viability and induces the expression of senescence-associated β-galactosidase and p16INK4. Moreover, HU-induced senescent BMMSC, although they did not change MSC markers expression, exhibited reduced capacity osteogenic and adipogenic differentiation. Conversely, HU treatment increased immunoregulatory functions of BMMSC compared with untreated cells and determined by T-cell proliferation. Interestingly, HU did not influence the capacity of BMMSC to induce monocytic myeloid-derived suppressor cells. Thus, these results suggest that HU improves the BMMSC functions on the T-cell inhibition and preserves their interaction with myeloid cell compartment. Mechanistically, BMMSC under HU treatment displayed a downregulation of mTOR and p38 MAPK signaling that may explain the reduced cell differentiation and increased immunomodulation activities. Together, the results obtained in this investigation suggest that HU by inducing senescence-like phenotype of BMMSC influences their cellular differentiation and immunoregulatory functions. PB - MDPI T2 - Journal of Personalized Medicine T1 - Hydroxyurea Induces Bone Marrow Mesenchymal Stromal Cells Senescence and Modifies Cell Functionality In Vitro IS - 11 SP - 1048 VL - 11 DO - 10.3390/jpm11111048 ER -
@article{ author = "Kapor, Sunčica and Vukotić, Milica and Subotički, Tijana and Đikić, Dragoslava and Mitrović-Ajtić, Olivera and Radojković, Milica and Čokić, Vladan and Santibanez, Juan", year = "2021", abstract = "Hydroxyurea (HU) is an antineoplastic agent that functions as an antimetabolite compound by inhibiting the ribonucleotide reductase. HU acts mainly as a cytostatic drug that through DNA replication stress may trigger a premature senescence-like cell phenotype, though its influence on bone marrow-derived mesenchymal stem/stromal cell (BMMSC) functions has not elucidated yet. Our results indicate that HU inhibits the growth of human BMMSC alongside senescence-like changes in both morphology and replicative potential, provokes cell cycle arrest at the S phase without affecting cellular viability and induces the expression of senescence-associated β-galactosidase and p16INK4. Moreover, HU-induced senescent BMMSC, although they did not change MSC markers expression, exhibited reduced capacity osteogenic and adipogenic differentiation. Conversely, HU treatment increased immunoregulatory functions of BMMSC compared with untreated cells and determined by T-cell proliferation. Interestingly, HU did not influence the capacity of BMMSC to induce monocytic myeloid-derived suppressor cells. Thus, these results suggest that HU improves the BMMSC functions on the T-cell inhibition and preserves their interaction with myeloid cell compartment. Mechanistically, BMMSC under HU treatment displayed a downregulation of mTOR and p38 MAPK signaling that may explain the reduced cell differentiation and increased immunomodulation activities. Together, the results obtained in this investigation suggest that HU by inducing senescence-like phenotype of BMMSC influences their cellular differentiation and immunoregulatory functions.", publisher = "MDPI", journal = "Journal of Personalized Medicine", title = "Hydroxyurea Induces Bone Marrow Mesenchymal Stromal Cells Senescence and Modifies Cell Functionality In Vitro", number = "11", pages = "1048", volume = "11", doi = "10.3390/jpm11111048" }
Kapor, S., Vukotić, M., Subotički, T., Đikić, D., Mitrović-Ajtić, O., Radojković, M., Čokić, V.,& Santibanez, J.. (2021). Hydroxyurea Induces Bone Marrow Mesenchymal Stromal Cells Senescence and Modifies Cell Functionality In Vitro. in Journal of Personalized Medicine MDPI., 11(11), 1048. https://doi.org/10.3390/jpm11111048
Kapor S, Vukotić M, Subotički T, Đikić D, Mitrović-Ajtić O, Radojković M, Čokić V, Santibanez J. Hydroxyurea Induces Bone Marrow Mesenchymal Stromal Cells Senescence and Modifies Cell Functionality In Vitro. in Journal of Personalized Medicine. 2021;11(11):1048. doi:10.3390/jpm11111048 .
Kapor, Sunčica, Vukotić, Milica, Subotički, Tijana, Đikić, Dragoslava, Mitrović-Ajtić, Olivera, Radojković, Milica, Čokić, Vladan, Santibanez, Juan, "Hydroxyurea Induces Bone Marrow Mesenchymal Stromal Cells Senescence and Modifies Cell Functionality In Vitro" in Journal of Personalized Medicine, 11, no. 11 (2021):1048, https://doi.org/10.3390/jpm11111048 . .