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Abstract: Forest fires are becoming a serious concern in Central European countries such as Austria
(AT) and the Czech Republic (CZ). Mapping fire ignition probabilities across countries can be a useful
tool for fire risk mitigation. This study was conducted to: (i) evaluate the contribution of the variables
obtained from open-source datasets (i.e., MODIS, OpenStreetMap, and WorldClim) for modeling
fire ignition probability at the country level; and (ii) investigate how well the Random Forest (RF)
method performs from one country to another. The importance of the predictors was evaluated using
the Gini impurity method, and RF was evaluated using the ROC-AUC and confusion matrix. The
most important variables were the topographic wetness index in the AT model and slope in the CZ
model. The AUC values in the validation sets were 0.848 (AT model) and 0.717 (CZ model). When
the respective models were applied to the entire dataset, they achieved 82.5% (AT model) and 66.4%
(CZ model) accuracy. Cross-comparison revealed that the CZ model may be successfully applied to
the AT dataset (AUC = 0.808, Acc = 82.5%), while the AT model showed poor explanatory power
when applied to the CZ dataset (AUC = 0.582, Acc = 13.6%). Our study provides insights into the
effect of the accuracy and completeness of open-source data on the reliability of national-level forest
fire probability assessment.

Keywords: machine learning; MODIS; OpenStreetMap; random forest; forest fire occurrence
mapping; WorldClim

1. Introduction

Forest fires are among the most destructive extreme events that have steadily increased
during the last century and the current century [1]. More than 44,000 forest fires occurred in
Europe in 2021 alone, covering an area of almost half a million hectares [2]. In general, most
fires occurred in the southern part of Europe [3], while Central European countries have
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been less affected in the last two decades [4]. For example, the average burned area per year
in Austria and in the Czech Republic over this period was 71 and 350 hectares, respectively.
Climate change, manifested in increased temperature and prolonged drought [5], has
worsened the situation and made Austria and the Czech Republic significantly more prone
to forest fires, as was experienced in the past [2]. According to the Statistical Yearbook of
the national fire rescue service, over the last four years (2018–2021), there were 7594 forest
fires in the Czech Republic, which is approximately the same amount as in the entire
2001–2010 decade [4]. Therefore, there is an imminent need to be better prepared for such
serious threats, and measures to mitigate the impact of forest fires in the future must be
undertaken as soon as possible [5]. First, the territory at the country level must be classified
in terms of forest fire risk, to label those parts more endangered by the threat of fires as
those of the highest priority. Additionally, reliable data must be collected from various local,
regional, and global sources to build a proper model for predicting and mapping forest fire
ignition. In some studies, models have relied on specific local data [6] for predicting forest
fire probability, whereas in other studies, local data were combined with regional data
sources [7], even for the same territory. Regardless of whether they are local or regional,
these data can be divided into several groups, including vegetational, climatic, topographic,
and anthropogenically characterized [8–11].

In general, two different approaches, namely, a deterministic or a stochastic approach
can be used to model fire ignition probability [12]. In the deterministic models, fire igni-
tion probability was estimated using the weight assigned to each of the predictors. This
approach presumes prior knowledge of all predisposing variables that contribute to fire
ignition, or they are evaluated by regression analysis. The ease of application and inter-
pretation of the deterministic model has been confirmed in other studies [13]. Further, the
selection of the appropriate model depends mainly on the spatial and temporal scales of
the study area and available data [14]. Geographically weighted regression was used to
model the fire ignition probability of large areas or time series data [15–20]. For the same
purpose, generalized additive regression models have been applied in other studies [21–23].
Alternatively, in the stochastic approach, randomness is included as a component of fire
probability models characterized by complex behaviors and patterns. Machine learning
(ML), which has prevailed in forest fire and wildfire modeling during the last decade [24],
represents a category of stochastic methods. In contrast to deterministic methods, ML mod-
els are not dependent on prior knowledge of the investigated phenomenon, and can use
nonparametric data. ML methods can identify nonlinear patterns of fire ignition predictors,
but they require large datasets to create accurate models. This and the predictor importance
in interpretation, which is not as straightforward as in regression methods, complicate
their application. The most common and widely used ML methods are Artificial Neural
Networks (ANN), Decision Trees (DT), and Support Vector Machines (SVM) [24]. Random
Forest (RF), as a DT method [25], has proven efficiency compared to other ML methods,
based on the mean sum of squared errors (MSE) metric [26], percentage of fire points in
higher probability classes [27], or model precision [28].

Countries that have not experienced a serious problem with forest fires in the past do
not practice collecting historical fire events required for ignition modeling. Open-source
data can overcome this problem [29,30], although the accuracy and reliability of the data
require verification. For this purpose, open-source data related to forest fire events and
features that affect ignition were collected in two central European countries: Austria and
the Czech Republic. To predict fire ignition probability at the country scale, RF models
were developed for both countries independently, and applied to the country of origin and
to other countries. More specifically, two objectives guided our study: (i) to evaluate the
contribution of the variables obtained from the open-source data for modeling fire ignition
probability at the country level; and (ii) to test the predictive power of the obtained model
when applied from one country to the other and vice versa, and to create the corresponding
ignition probability maps. This is the first study that uses ML methods to predict the
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ignition probability of forest fires in Austria and the Czech Republic using only variables
derived from open-source data.

2. Materials and Methods
2.1. Study Areas

The two Central European countries included in this study are similar in size and
share a border of 466 km. Austria has an area of 83,882 km2 and the Czech Republic covers
an area of 78,866 km2 (Figure 1). Austria is a predominantly alpine country with the highest
peak at 3798 m above sea level, whereas the Czech Republic is a predominantly flat country
with the highest peak at 1603 m. Both countries belong to the temperate climate zone,
where humid westerly winds prevail. Temperatures vary with altitude. Specifically, at
higher altitudes, the temperature decreases and precipitation increases. On the other hand,
in eastern areas, a continental climate with little precipitation prevails, with warm summers
and cold winters. In Austria, the average yearly temperature varies between −7 ◦C in
the Alps and 12 ◦C in the lower parts; and the overall annual rainfall varies between
450 mm in the lower parts and 3000 mm in the Alps [31,32]. Meanwhile, the average yearly
temperature in the Czech Republic varies between −0.4 ◦C in the alpine part and 10 ◦C in
the lower parts of the southeast. The overall annual rainfall varies between 410 to 1705 mm;
however, most of the country receives 500 to 700 mm of rainfall per year [33].
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The forest area in Austria is more than four million hectares, which corresponds to
47.9% of Austria’s national territory. The most common tree species by growing stock
(volume) are the Norway spruce (Picea abies L.) (60.2%), followed by the European beech
(Fagus sylvatica L.) (10.3%), pines (Pinus sp.) (7.4 %), and the European larch (Larix decidua L.)
(7.1%) [34]. In turn, the forest area in the Czech Republic is more than 2.6 million hectares,
which corresponds to 34.1% of the national territory. In this case, the most common tree
species by growing stock (volume) are the Norway spruce (48.8%), followed by the Scots
pine (Pinus sylvestris L.) at 16.1%, and the European beech at 9.0% [35]. The fire season in
the Czech Republic is characterized by two peaks in ignition frequency; the first during
April and the second during August [36,37]. In almost 90% of forest fires, the burnt area
is less than 1 ha. The main cause of forest fires is negligence, while natural causes such
as lightning have a minor share [36]. The annual number of forest fires in Austria varies
between 100 and 300. Similarly, most fires in the Czech Republic are recorded in Spring
during April, and later in Summer during July and August. Approximately 40.5% of all
forest fires in Austria are caused directly or indirectly by people, while 41.1% of forest
fire ignition is due to undetermined causes [38]. On the other hand, lightning is a natural
ignition source responsible for approximately 15% of all forest fires in Austria [39].

According to the Eurostat database, Austria and Czech Republic had 8,978,929 and
10,516,707 citizens, respectively, at the end of 2022 [40]. The total length of the road network
in Austria is 137,552 km, while road density is 173.4 km per 100 square kilometers. The
Czech Republic has 130,710 km of roads, with a road density of 165.7 km per 100 square
kilometers. The total length of the rail in Austria is 5724 km, while the rail network density
is 7.2 km per 100 square kilometers. The Czech Republic has a 9355 km long rail, with a rail
network density of 11.9 km per 100 square kilometers.

2.2. Data Collection
2.2.1. Fire Events (the Dependent Variable)

Historical fire data were obtained from the NASA National Aeronautics and Space
Administration Fire Information for Resource Management System [41] for the period
between January 2000 and December 2020. Moderate resolution imaging spectroradiometer
(MODIS) data from the Terra and Aqua platforms with a spatial resolution of 1 km were
used as the dependent variable. All fire events with a confidence level higher than 50%
(one or more) were attributed to each of the 1 × 1 km grid cells and were considered for
further analysis. Grid cells with the occurrence of forest fires were labeled with “1” and
those without forest fires with “0”. In all, 576 (out of 86,524) cells in Austria and 1007 (out
of 80,099) cells in the Czech Republic were selected as “fire cells” and labeled with “1” for
further analysis.

2.2.2. Predictors (the Independent Variables)

The independent variables were classified into four groups: topography, vegetation,
climate, and anthropogenic factors. Variables that were specific to each of the primary
groups were chosen according to prior knowledge of fire ignition [7,42–47]. Topographic
features, including elevation (E), slope (S), aspect (A), and the topographic wetness index
(TWI), were derived from the digital elevation model (DEM) of the study area. Average
values for elevation (E), slope (S), dominant aspect (A), and TWI were computed for all
polygons within a 1 × 1 km grid using ArcGIS software 10.2 (ESRI, Redlands, CA, USA).

Vegetational predictors were downloaded from the CORINE 2018 database [48]. The
following land cover classes (CLC) were extracted as a vector layer and used for fur-
ther analysis: broad-leaved forest (BF), coniferous forest (CF), mixed forest (MF), natural
grasslands (NG), moors and heathland (MH), transitional woodland–shrub (TWS), and
sparsely vegetated areas (SVA) (Figure 2). The CLC vector layer was then intersected with
the 1 × 1 km polygon grid data creating a new layer with a respective table of attributes
containing information about the polygon grid object and area covered by the selected
CLC layer.
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Figure 2. Data processing workflow.

We considered the following bioclimatic variables as potential predictors of forest
fire ignition in both countries: mean temperature of the warmest quarter of the year
(MTempWrQ), mean temperature of the driest quarter (MTempDQ), precipitation in the
warmest quarter (PrecWrQ), and precipitation in the driest quarter (PrecDQ). Bioclimatic
variables were downloaded from the WorldClim portal [49] as GeoTiff files with a spatial
resolution of 30 s (~1 km2).

To assess the effect of anthropogenic predictors of forest fire ignition, data about
roads, railroads, populated places, and agricultural land were obtained from the Open-
StreetMap [50]. Distance from the center of the 1 × 1 km grid layer to the nearest object
such as building (DisBld), roads (DisRo_A, DisRo_B, and DisRo_C), railway (DisRa), and
agricultural land (DisAgL) was computed in the ArcGIS environment. Population density
(PopD) was obtained as a raster dataset available from the Center for International Earth
Science Information Network (CIESIN), Columbia University [51], as a GeoTiff file. The
Zonal Statistic Tool of the ArcGIS software was used to calculate the sum of the number of
people per polygon.

All acquired information was stored in the databases for both countries separately, and
used later for data processing, model building, and model transferability testing (Figure 2).

2.3. Variable Evaluation and Selection

Based on a comprehensive literature review and personal experience, we preselected
24 potential variables for further analysis (Table A1). All variables were checked for
multicollinearity in two steps. First, the variables were evaluated for multicollinearity by
the variance inflation factor (VIF) [52]. Only variables with a VIF of ≤10 were selected for
further analysis (Table A1). We followed the procedure described by Kuhn and Johnson [53]
to perform the second step. In short, Spearman’s rho correlation matrix was calculated
for all variables remaining after VIF analysis. Then, conflicting pairs of variables with
a correlation coefficient > 0.7 were identified. One of the variables from the conflicting
pairs was removed in the second step if the model performance, measured by the AUC
(area under curve) value, was reduced when this variable was included in the model. As a
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final step, we recalculated the correlation matrix until no two variables had a correlation
coefficient > 0.7 (Figures A1 and A2). This procedure was independently performed for the
Austrian and Czech datasets. Thus, we separately ranked and selected the variables for
each spatial entity. The maximum number of variables that could be included in the model
was defined for each dataset based on the number of fire events [54]. Finally, variable
importance in the RF was assessed using the Gini impurity function for a classification
problem [55]. A variable with a value of 1 is considered to be most important in RF when
the variable importance measures are averaged across all trees in the forest.

2.4. Model Training and Validation

We used Statistica 14.0.0.15 to build a Random Forest (RF) model [25] for both Austria
(AT) and the Czech Republic (CZ). We trained the model using 70% of the data, and
independently evaluated it based on the remaining 30% using the receiver operating
characteristic (ROC) curve within OriginPro software ver. 2023 (OriginLab Corporation,
Northampton, MA, USA). An area under the ROC curve (AUC) with 0.5–0.7 indicates low
performance; in turn, an AUC with 0.7–0.8 indicates good performance; while an AUC with
0.8–0.9 indicates excellent performance; and an AUC > 0.9 indicates outstanding model
performance [56].

Forest fire modeling based on binary classification yielded a confusion matrix in which
the rows indicate the observed classes and the columns indicate the predicted classes.
From this matrix, the following metrics were extracted: the number of fire cells correctly
predicted as fire cells (true positive, TP), the number of non-fire cells correctly predicted
as non-fire cells (true negative, TN), the number of non-fire cells incorrectly predicted as
fire cells (false positive, FP), and the number of fire cells incorrectly predicted as non-fire
cells (false negative, FN) [57,58]. We used these four metrics to compute accuracy (Acc)
and precision (Prec):

ACC =
(TP + TN)

(TP + FP + TN + FN)
(1)

Prec =
(TP)

(TP + FP)
(2)

To designate each cell as a fire or non-fire cell for each country, we determined a cutoff
point using the sensitivity equal-specificity method [59] available in the easyROC web
tool [60]. The probability estimated by the model for each cell was then compared to the
optimal cutoff point. If the probability estimated by the model for a particular cell was
higher than the optimal cutoff point, the cell was categorized as a fire cell. In contrast, the
particular cell was categorized as a non-fire cell if the estimated probability was lower than
the optimal cutoff point.

The selection of the variables for the model followed the procedure described by Ye
et al. [44] and Genuer et al. [61]. Each variable was included in the model N-1 times, where
N represents the number of variables that met the criteria of VIF < 10 and Spearman’s
rho correlation < 0.7; therefore, they were considered predictors for each country. The
RF models were run N times and another variable was excluded in each iteration. The
obtained variable importance, ranked from 0 to 1, was used to calculate the relative variable
importance, which represents an average value from all iterations for a specific variable. All
variables were assigned a value ranging from 1 to N based on their average importance. The
highest important variable was assigned 1, and the least important variable was assigned
N. RF models with 1–N variables were generated and evaluated before the selection of the
best model for each country. All RF analyses were performed using the optimal number
of trees in the forest (ntree) with a default value of mtry, which was equal to the square
root of the number of variables included in the model, and which represents the number of
variables at each split. In the final models for both countries, mtry was set up as 4, since the
number of predictors were 12 and 14 in AT and CZ datasets, respectively. The ntree was
set up as 500 in both models because for the given number of mtry there is no significant
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improvement in the accuracy with an increase in the number of trees in the forest [62].
The same number of trees was used in similar studies related to wildland fire occurrence
prediction [63,64].

2.5. Probability Mapping

The RF models were utilized to estimate forest fire ignition probabilities for both fire
cells and non-fire cells. Subsequently, ArcGIS 10.2 was employed to produce corresponding
maps for each country. The probability maps were classified into five categories based on
the percentile method: very low (1–40%), low (21–65%), medium (66–85%), high (86–95%),
and very high (96–100%) forest fire ignition probability [65]. Maps were generated based
on the original country model, and by transferring the original country-specific models
from one country to another; that is, by applying the AT model to the Czech Republic and
CZ model to Austria. In all, four maps were generated: two “authentic” and two with
transferred models.

2.6. Transferability of the Forest Fire Probability Models

The transferability of the forest fire probability models from one country to another was
evaluated primarily using the AUC, Acc, and Prec metrics (Section 2.4). The metrics were
compared between the original models for both countries, and the models generated for one
country and applied to the other country dataset. The performance of the model was further
assessed by comparing the distribution of fire events across probability classes [7,42,43].

3. Results
3.1. Variable Contribution to Forest Fire Occurrence

Among the 24 preselected explanatory variables (Table A1), the conditions of VIF≤ 10
and Spearman’s rho < 0.7 were met by 12 variables included in the AT model and by 14 in
the CZ model (Table 1). The topographic wetness index (TWI) had the highest influence
on fire probability in the AT model, followed by precipitation in the warmest quarter
(PrecWrQ), distance to rail (DisRa), distance to roads (DisRo C), and distance to agricultural
land (DisAgL). Coniferous forest (CF) was found to be the least significant variable in the AT
model. The slope (S) had the highest influence on fire probability in the CZ model, followed
by distance to rail (DisRa), mean temperature of the warmest quarter (MTempWrQ), and
distance to buildings (DisBld). The least important variable in the CZ model was the
distance to agricultural land (DisAgL) (Table 1).

Table 1. Evaluation of predictors’ importance on fire probability for the AT and CZ models based on
RF Gini impurity.

Predictor Code Unit AT CZ

Coniferous forest CF m2 0.467 0.718
Distance to Buildings DisBld m 0.498 0.799
Distance to asphalt roads DisRo_A m * 0.765
Distance to forest roads DisRo_B m 0.528 0.791
Distance to hiking trails DisRo_C m 0.652 0.762
Distance to Rail DisRa m 0.743 0.817
Distance to Agricultural Land DisAgL m 0.639 0.667
Population density PopD n/km2 0.519 0.760
Distance to Water DisW m 0.555 0.705
Aspect A degree 0.529 0.728
Slope S degree * 1.000
Topographic wetness index TWI 1.000 *
Mean temperature of the warmest quarter MTempWrQ ◦C * 0.814
Mean temperature of the driest quarter MTempDQ ◦C 0.637 0.787
Precipitation in the warmest quarter PrecWrQ mm 0.863 *
Precipitation in the driest quarter PrecDQ mm * 0.754

* Variables excluded due to VIF higher than 10 or Spearman’s rho correlation coefficient higher than 0.7.
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3.2. Model Evaluation

In the training phase, the AUC values of the RF models applied to the AT and CZ
datasets were 0.883 and 0.799, respectively (Figure 3). In the validation phase, the values
were 0.848 (AT) and 0.717 (CZ), respectively. The AT model had higher Acc (82.1%) and
Prec (83.9%) in the training data set compared to the CZ model (Acc: 66.5%; Prec: 76.8%).
In the validation data set, Acc (81.9%) and Prec (80.5%) of the AT model were higher than
in the CZ model (Acc: 66.0%, Prec: 66.1%) (Table 2).

Sustainability 2023, 14, x FOR PEER REVIEW 8 of 21 
 

Distance to Water DisW m 0.555 0.705 
Aspect A degree 0.529 0.728 
Slope S degree * 1.000 
Topographic wetness index TWI  1.000 * 
Mean temperature of the warmest quarter MTempWrQ °C * 0.814 
Mean temperature of the driest quarter MTempDQ °C 0.637 0.787 
Precipitation in the warmest quarter PrecWrQ mm 0.863 * 
Precipitation in the driest quarter PrecDQ mm * 0.754 

* Variables excluded due to VIF higher than 10 or Spearman’s rho correlation coefficient higher than 
0.7. 

3.2. Model Evaluation 
In the training phase, the AUC values of the RF models applied to the AT and CZ 

datasets were 0.883 and 0.799, respectively (Figure 3). In the validation phase, the values 
were 0.848 (AT) and 0.717 (CZ), respectively. The AT model had higher Acc (82.1%) and 
Prec (83.9%) in the training data set compared to the CZ model (Acc: 66.5%; Prec: 76.8%). 
In the validation data set, Acc (81.9%) and Prec (80.5%) of the AT model were higher than 
in the CZ model (Acc: 66.0%, Prec: 66.1%) (Table 2). 

 
Figure 3. AUC values of the RF model for the training and validation data sets from Austria (AT, a) 
and the Czech Republic (CZ, b). 

Table 2. Confusion matrix for the training and validation data sets from Austria (AT) and the Czech 
Republic (CZ). 

Country Cut Off 
 Training Validation 
  Predicted Acc Prec  Predicted Acc Prec 
  0 1 (%) (%)  0 1 (%) (%) 

AT 0.605 Observed 0 49315 10783 82.1 83.9 0 21166 4684 81.9 80.5 1 63 328 1 36 149 

CZ 0.575 Observed 0 36657 18533 66.5 76.8 0 15763 8139 66.0 66.1 1 162 535 1 105 205 

According to the AT model and CZ model applied to the AT dataset (CZ to AT), zones 
with a very high probability of forest fire ignition in Austria are located in the eastern and 
southeastern regions of the country and range from 1.5% (AT) to 2.2% (AT to CZ) at the 

Figure 3. AUC values of the RF model for the training and validation data sets from Austria (AT, (a))
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Table 2. Confusion matrix for the training and validation data sets from Austria (AT) and the Czech
Republic (CZ).

Country Cut Off

Training Validation

Predicted Acc Prec Predicted Acc Prec
0 1 (%) (%) 0 1 (%) (%)

AT 0.605 Observed
0 49,315 10,783

82.1 83.9
0 21,166 4684

81.9 80.51 63 328 1 36 149

CZ 0.575 Observed
0 36,657 18,533

66.5 76.8
0 15,763 8139

66.0 66.11 162 535 1 105 205

According to the AT model and CZ model applied to the AT dataset (CZ to AT), zones
with a very high probability of forest fire ignition in Austria are located in the eastern and
southeastern regions of the country and range from 1.5% (AT) to 2.2% (AT to CZ) at the
country level. In contrast, areas with a very low probability of forest fire occurrence are
situated in the central and southwestern parts of Austria, accounting for 49.4% (AT) to
43.4% (CZ to AT) of the forested land (Figure 4). On the other hand, the authentic CZ model
indicates that zones with a very high probability of forest fire ignition in the Czech Republic
are located in the eastern and southeastern regions, consistent with when the AT model
was applied to the CZ dataset (AT to CZ). At the country level, these variations range from
1.8% (CZ) to 2.8% (AT to CZ). Furthermore, areas with a very low probability of forest fire
occurrence in the Czech Republic are situated in the southern, southwestern, and northern
regions, accounting for 59.7% (CZ) to 51.6% (AT to CZ) of the forested land (Figure 4).
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The predictive ability of the AT and CZ models was additionally assessed by applying
them to the country of origin or to the dataset of the other country. Acc and Prec of
the observed and predicted values from the confusion matrix were used to evaluate the
predictive ability of the models. The Acc values of the AT and CZ models applied to
the Austrian dataset were 82.0% and 82.5%, respectively. When the same models were
applied to the Czech Republic dataset, Acc was 66.4% for the CZ model and 13.6% for
the AT model (Table 3). The AUC for the AT and CZ models applied to the Austrian
dataset were 0.872 and 0.808, respectively. When the same models were applied to the
dataset of the Czech Republic, the AUC values were 0.774 for the CZ model and 0.582
for the AT model (Figure 5). The AT model applied to the Austrian and Czech Republic
datasets demonstrated high and very high precision, respectively. In contrast, the CZ
model applied to the Austrian and Czech Republic datasets demonstrated acceptable and
moderate precisions, respectively (Table 3).
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Table 3. Confusion matrix for the AT and CZ models when they were applied to the country of origin
or transferred to the other country: AT to AT, when the AT is model applied to the AT territory; AT to
CZ, when the AT model is applied to the CZ territory; CZ to AT, when the CZ model is applied to the
AT territory; CZ to CZ, when the CZ model is applied to the CZ territory.

Model Predicted Acc Prec

0 1 (%) (%)

AT to AT Observed 0 70,481 15,467 82.0 82.8
1 99 477

CZ to CZ Observed 0 52,420 26,672 66.4 73.5
1 267 740

CZ to AT Observed 0 71,017 14,931 82.5 66.5
1 193 383

AT to CZ Observed 0 9950 69,142 13.6 96.3
1 37 970
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3.3. Evaluation of Model Applicability

When applied to the country of origin, the AT model showed superior performance
in identifying lower forest fire probability in the very low, low, and moderate probability
classes as compared to the CZ model. On the other hand, when the models were applied
to the dataset of the other country, the CZ model demonstrated better performance in
identifying lower forest fire probability in the very low, low, and moderate probability
classes as compared to the AT model (Table 4). When applied to the country of origin,
the AT model exhibited superior performance in identifying a higher incidence of forest
fires and was more effective in the high- and very-high-risk classes as compared to the CZ
model. However, when the models were applied to the dataset of the other country, the CZ
model showed better performance in identifying a higher probability of forest fires and
was more effective in the high- and very-high-risk classes as compared to the AT model
(Table 4). A significant difference was observed in the aggregated relative probability of
the three highest classes (moderate, high, and very high) between the AT (82.7%) and CZ
(61.8%) models when applied to the dataset of the country-of-origin. On the other hand,
when the models were applied to the dataset of the other country, the CZ model (86.8%)
outperformed the AT model (45.4%) in terms of the aggregated relative probability of the
three highest classes. When applied to the country of origin, the AT model categorized
17.3% of forest fire events in the low and very low classes, while the CZ model categorized
38.8% of forest fire events in the same classes. However, when the models were applied to
the dataset of the other country, the CZ model classified 13.1% of forest fire events in the
low and very low classes, while the AT model classified 54.5% of forest fire events in the
same classes.

Table 4. Forest fire distribution across different probability classes based on the AT and CZ models
applied to country of the model origin and transferred to the other country: AT to AT, when the AT is
model applied to the AT territory; AT to CZ, when the AT model is applied to the CZ territory; CZ to
AT, when the CZ model is applied to the AT territory; CZ to CZ, when the CZ model is applied to the
CZ territory.

Forest Fire
Probability (%)

Forest Fire
Probability

Class
AT to AT AT to CZ CZ to AT CZ to CZ

0–40 Very low 10.7 26.5 7.2 17.4
41–65 Low 6.6 28.0 5.9 20.9
66–85 Moderate 25.2 27.4 13.5 24.7
86–95 High 38.3 13.4 43.4 21.0

96–100 Very high 19.2 4.6 29.9 16.1

4. Discussion
4.1. Variable Contribution to Forest Fire Occurrence

The impact of vegetation, topography, human activity, and climate on the ignition
of forest fires was assessed using the machine learning (ML) approach for two Central
European countries, Austria and the Czech Republic. The contribution of the selected
variables, derived from widely available open data sources, was independently estimated
using Random Forest (RF) models for each country. In both models, the variables con-
tributing the most were from the group of topographic features, namely the topographic
wetness index (TWI) in the AT model and slope (S) in the CZ model. The importance of
topographic features in fire ignition has been revealed in several studies [47,66–68]. In gen-
eral, topographic features change fuel conditions and their ability to burn [12,69–72]. The
TWI emphasizes the effect of topography on soil moisture distribution, indirectly affecting
the initial fire behavior, and it is negatively correlated to the ignition probability [67]. Thus,
a higher TWI indicates a lower ignition probability [68]. Some studies have found that
TWI effectively predicts fire occurrence [68], whereas the role of TWI in other studies was
minor [73]. In contrast to TWI, a higher slope (inclination) value indicates a higher ignition
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probability [68]. A study conducted by Penman et al. [66] found that lightning ignitions are
predicted to occur most likely on ridges and upper slopes further away from roads and
houses. In contrast, the interaction between the slope and the anthropogenic features in
the study by Calviño-Cancela et al. [74] revealed that fires occurred on similarly inclined
slopes within and outside the area with a pronounced wildland-urban interface (WUI).

Climatic variables define the condition of fire fuel, [75–77] which is of the greatest
importance for fire ignition [78,79]. The importance of climatic variables for fire ignition,
which has been highlighted in many studies [77,80–82], was also confirmed in our study,
particularly using PrecWrQ (AT model) and MTempWrQ (CZ model), which had high
explanatory power. Fire-related climatic indices explain current fire ignition in suburban
and protected areas of the Czech Republic, but they also predict a significant increase in fire
frequency due to expected climate change-related alterations that will strongly influence
fuel dryness [83]. In addition, weather indices corresponded well with the forest fire
frequency locally and at the country scale [84]. Indeed, a strong relationship between
wildfire ignition frequency and weather conditions has been demonstrated in the Czech
Republic, where a significant increase in drought and heat waves was recorded in the
period 1991–2015, compared to the years 1971–1990 [85]. In addition to ignition frequency,
global warming–which leads to increased air temperature, reduced humidity, and stronger
winds–will significantly affect the size of forest fires until the end of this century [86,87]. The
effects of climate change were evaluated indirectly by comparing changes in fire frequency
in years, seasons, days, and daytime [36]. A greater frequency of forest fires in the afternoon
hours and on weekends was found during the period 1992–2014 compared to 1974–1983.
Anomalies in fire activity in Austria during 2012 were connected to exceptionally dry
conditions combined with high temperatures and strong spring convection, which led
to widespread thunderstorm occurrence [88]; emphasizing the role of weather indices in
forest fire ignition, particularly in alpine areas. In our study, the AT model ranked PrecWrQ
as the second most important predictor of fire ignition, whereas MTempDQ ranked fifth. In
addition, the role of PrecWrQ can be explained by the naturally induced ignition of forest
fires in Austria, which is typical for alpine zones, where lower mean precipitation occurs
in areas with a higher number of thunderstorms and lightning events during the summer
months [89].

Among anthropogenic features, the most important variables in our study, listed in
descending order, were distance to railways (DisRa), distance to roads (DisRo_C), and
distance to agricultural land (DisAgL) in the AT model; and distance to railways (DisRa),
distance to buildings (DisBld), and distance to roads (DisRo_B) in the CZ model. Arndt
et al. [90] confirmed the effect of the proximity of railway routes on forest fire ignition
in Austria, as did Nezval et al. [91] in the Czech Republic; as were other anthropogenic
features such as forest roads and settlements in other countries [90,92]. A similar study
conducted in China showed the positive effect of railway density on fire ignition, whereas
road density had a negative impact on fire ignition [93]. In contrast, a positive relationship
between road density and fire ignition was observed in Sweden [94]. Moreover, previous
studies conducted in Serbia and Poland have underlined the role of anthropogenic factors
in forest fire ignition [6,7,42].

Among vegetation-related features, only coniferous forests (CF) were included in
both the AT and CZ models. Other vegetation-related features were excluded during the
variable selection (Table A1, Figures A1 and A2) and model-building processes because
of their low influence on model performance. This remaining vegetation characteristic
had the lowest influence on forest fire ignition in both countries compared to the other
groups of predictors, emphasizing the dominant role of climatic and anthropogenic fac-
tors in the models. Our findings related to the contribution of vegetation to forest fire
ignition are in accordance with the main causes of forest fires in both countries, which are
negligence and/or accidental ignition, being particularly serious during warm and dry
weather conditions and at particularly vulnerable sites [36,38,39,95]. Hence, if the weather
conditions are favorable and the influence of topographic factors on fuel conditions is
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strong, in combination with the strong influence of anthropogenic factors, the probability
of forest fire ignition will be higher regardless of vegetation type.

4.2. Evaluation of Model Applicability and Transferability

The developed AT model displayed excellent performance on the validation dataset,
whereas the CZ model showed a notably lower performance (Figure 3, Table 2). RF models
often perform better in accuracy than other ML and logistic regression (LR) models [42,92].
This was confirmed when the AT model metrics were compared to a logistic regression
model developed for the same territory [90]. However, when the AT model developed in
this study was compared to RF and maximal entropy (MaxEnt) models developed for the
province of Tyrol in Austria [96], a slightly higher AUC value was recorded in the present
AT model; but all models can be appraised as excellent [56].

Model quality was strongly influenced by the accuracy of the available datasets [97–100].
On the one hand, it is expected that some “fire-resistant” countries will face increased
fire activity in the future due to the expected global warming [86,87]. However, there is a
lack of historical data to build accurate models that may help practitioners plan measures
for fire-risk mitigation. One of the solutions for this problem could be the transfer of
models from a territory with more reliable data (where they have been developed) to
another territory with data of poor quality or without any data. Using this approach, Bekar
et al. [101] tested the transferability of cross-regional and regional forest fire ignition models
in the Alps and the Mediterranean Basin. They found that the transferability potential of
the cross-regional model was higher than that of regional models. The predictive ability
of the regional models was only good when they were transferred across regions with
similar environmental conditions [101]. One of the main aims of this study was to test the
predictive ability of models developed separately for Austria and the Czech Republic when
they were applied from one country to the other (AT to CZ and CZ to AT). As the AT model
showed better predictive power than the CZ model, it was expected that the prediction
for the territory of the Czech Republic would be improved by applying the AT model.
However, this analysis revealed that the AT model showed a low level of accuracy in forest
fire ignition in the Czech Republic. In contrast, the predictive ability of the CZ model was
even better when it was applied to Austria than to the territory of the Czech Republic.

The differences in the accuracies of the models can be explained by the inconsistency in
the quality of the available input data between the investigated countries. Exploration of the
accuracy and completeness of the global land cover/land use data in OpenStreetMap (OSM)
revealed significant differences between Austria and the Czech Republic [102]. Thus, the
accuracy of OSM data was higher in Austria (80–98%) than in the Czech Republic (60–80%).
In contrast, the completeness of OSM data was higher in the Czech Republic (80–98%) than
in Austria (60–80%). According to a study by Azimi and Pahl [100], data incorrectness (e.g.,
lower accuracy) is more significant than data incompleteness for model accuracy. On one
hand, the ML method may ignore the missing rows or features and not include them in
the predictions and therefore control the disadvantage of the incompleteness of the model
accuracy. However, the ML tool is forced to use all the values regardless of their level of
accuracy; therefore, it cannot control or minimize the negative effect of lower data accuracy
on the obtained model accuracy [100]. These findings and our results emphasize the
necessity of checking the accuracy and completeness of the input data prior to transferring
the obtained model from one dataset to another.

4.3. Study Limitations

Nonetheless, our study showed some limitations. We used as a dependent variable
NASA FIRMS fire events observed by the MODIS Terra and Aqua platforms that are
capable of recording only fire events bigger than 0.1 ha [103]; while national fire inventory
databases record more or even nearly all fire events, in some countries even those smaller
than 0.01 hectares. For example, more than 90% of the forest fires recorded in the Czech
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Republic and Austria are smaller than 1 ha [36,38]. Therefore, the results obtained in this
study can be considered relevant for predicting forest fire events larger than 0.1 hectare.

5. Conclusions

In this study, we investigated the usefulness of open-source MODIS, OpenStreetMap,
and WorldClim data for the prediction of country-level forest fire probability in two Central
European countries. The RF model performed better in Austria (AUC = 0.848) than in the
Czech Republic (AUC = 0.717) when we used the country-of-origin datasets. In contrast,
the model performance changed to AUC = 0.582 and AUC = 0.808 when the AT model
was applied to the Czech Republic and the CZ model was applied to Austria, respectively.
We are inclined to attribute these asymmetric results to the difference between the data
obtained from OpenStreetMap, where the Czech Republic has more complete data and
Austria has more accurate data. The most influential variables on forest fire probability
were TWI in Austria and slope in the Czech Republic. We expect the explanatory variables
of forest fires to not change significantly over time, so the results can be considered long-
term predictions of the countries’ fire susceptibility. However, human activities that change
land use patterns would render the long-term susceptibility estimates obsolete, resulting
in a need to regularly update the current susceptibility maps. Despite the differences
between model performances, open-source data from multiple sources provided detailed
information on different objects, e.g., historical fires, individual buildings, asphalt and
forest roads, temperature, and rainfall; and significantly alleviated the data scarcity problem
associated with country-level assessments of forest fire probability. As these data are freely
available, we conclude that they can significantly reduce the amount of time, effort, and
costs associated with fire monitoring and detection by focusing resources on areas where
fires are more likely to occur (i.e., high and very high probability classes). Forest managers
could therefore use these easily available data as a planning tool in the lead-up to predict
whether fire probability is increasing across the country and when fire season is likely to
reach peak levels. Since these data are becoming updated and increasingly available in near
real-time, they could offer huge potential for low-cost probability assessments of forest fire
probability across the globe. Therefore, this study could be extended to other countries
where forest fires are a critical issue to provide more in-depth insight into the usefulness of
open-source data.
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Appendix A

Table A1. Independent variables initially considered for forest fire occurrence models with codes,
units, sources, and variance inflation factor (VIF) values. Z an p values based on the Mann-Whitney
U test for the fire cells.

Variable Code Units Source AT
VIF

CZ
VIF

AT
Mean ± SD

CZ
Mean ± SD z Score p

Vegetation

Broad-leaved forest BF ha CORINE
2018 1.42 1.34 6.2 ± 17.3 5.0 ± 15.0 −6.0 0.000

Coniferous forest CF ha 2.67 2.30 30 ± 33.8 28.8 ± 31.5 8.8 0.000
Mixed forest MF ha 1.95 1.50 13.6 ± 23.1 11.0 ± 19.2 −4.6 0.000

natural grassland NG ha 1.94 ** 1.13 ** 8.5 ± 20.9 0.5 ± 4.6 −115.3 0.000
moors and
heathland MH ha 1.29 ** 1.14 ** 2.7 ± 10.1 0.0 ± 1.5 −86.6 0.000

transitional
woodland–shrub TWS ha 1.05 1.36 0.8 ± 4.5 3.3 ± 11.6 62.1 0.000

sparsely vegetated
areas SVA ha 1.73 ** 1.10 ** 4.2 ± 13.4 0.0 ± 0.4 −100.7 0.000

Total forested area
(BF + CF + MF) TFA ha 1.3 × 108 ** 1.9 × 108 ** 49.9 ± 34.5 44.8 ± 33.3 −22.9 0.000

anthropogenic

Distance to
Buildings DisBld m OpenStreet

Map 2.40 1.93 449.7 ± 445 457.6 ± 389.9 16.7 0.429

Distance to asphalt
roads DisRo_A m 3.59 ** 1.90 955.3 ± 1292.2 480.1 ± 517.6 −37.2 0.000

Distance to forest
roads DisRo_B m 3.30 1.17 297 ± 503.5 193.3 ± 183.0 8.5 0.000

Distance to hiking
trails DisRo_C m 1.26 1.28 569.5 ± 536.1 783.7 ± 707.5 59.0 0.000

Distance to Rail DisRa m 1.39 1.28 6105 ± 4737.4 3728.3 ± 2987.5 −93.6 0.000
Distance to

Agricultural Land DisAgL m CORINE
2018 3.24 2.18 854.9 ± 1231.1 258.7 ± 536.6 −107.3 0.000

Population density PopD N/km2 CIESIN 1.12 1.29 56.3 ± 203.4 76.7 ± 282.9 −13.6 0.000

topographic

Distance to Water DisW m OpenStreet
Map 1.30 1.10 1061.4 ± 847.7 253.9 ± 234.6 −231.4 0.000

Elevation E m DEM 28.40 * 11.96 * 1019.2 ± 627.8 496.3 ± 181.6 −167.7 0.000
Aspect A degree 1.03 1.02 175.5 ± 44.5 174.5 ± 43.6 −2.8 0.149
Slope S degree 8.77 ** 4.04 19 ± 11.1 6.0 ± 3.6 −216.0 0.000

Topographic
wetness index TWI 7.46 4.00 ** 5.6 ± 1 7.5 ± 0.6 274.6 0.000

climatic

mean temperature
of the warmest

quarter
MTempWrQ ◦C WorldClim 25.62 * 8.25 14.1 ± 3.6 16.1 ± 1.3 95.3 0.000

mean temperature
of the driest quarter MTempDQ ◦C 6.02 2.76 −1.9 ± 2.4 0.5 ± 1.7 190.5 0.000

precipitation in the
warmest quarter PrecWrQ mm 8.26 4.56 ** 400.2 ± 98.2 254.1 ± 36.2 −252.8 0.000

precipitation in the
driest quarter PrecDQ mm 10.09 * 8.08 187.3 ± 63.9 111.7 ± 38.8 −219.4 0.000

* Variables excluded for further analysis due to VIF values higher or equal to 10. ** Variables excluded for further
analysis due to Spearman’s rho correlation coefficient higher than 0.7.
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