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The role of Zn in human health was discovered 60 years ago, and despite remarkable

research efforts, a sufficiently sensitive and specific biomarker of Zn status is still

lacking. Plasma/serum Zn, currently the best available and most accepted population

Zn status indicator, responds well to severe Zn deficiency, yet, mild to moderate Zn

deficiency states usually remain unrecognized. Identifying early-stage Zn deficiency

requires additional robust markers of Zn status. This paper discusses the sensitivity,

specificity, and responsiveness of plasma Zn concentrations to Zn interventions.

It describes the biochemical and dietary basis for the causal association between

Zn and fatty acid desaturases activity, FADS1 and FADS2, based on data collected

through studies performed in animals and/or humans. The influence of potential

confounders and covariates on the observed relationships is considered. Additional

potential Zn biomarkers are discussed and suggestions for further research in this

area are provided.
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Plasma/serum Zn concentrations–the best available
and accepted biomarker of Zn status in humans?

The story of Zn began 60 years ago when the role of Zn in human health was first recognized
and since then, remarkable progress has been made in the understanding of Zn biochemistry,
the biological role of Zn, clinical manifestations of Zn deficiency, and beneficial therapeutic
impacts of Zn supplementation. Plasma Zn concentration (PZC) was measured for the first
time in 1963 by the dithizone technique together with 24-h urine, hair, and red blood cell Zn
concentrations (1).

A couple of years later, in 1965, the original technique for measuring Zn concentrations
in plasma and blood cells, so-called atomic absorption spectrophotometry (AAS), was
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introduced (2). Ever since PZC measured by AAS has been widely
employed as a biomarker of Zn deficiency, and it is still, despite its
apparent disadvantages, commonly considered, as the best available
biomarker for estimating Zn status in humans (3–5).

Both, PZC and serum Zn concentration (SZC) are regarded as
valid estimates of Zn status.

The terms are used interchangeably, in this review they are both
identified as “PZC”.

PZC cutoffs are established for various age and sex groups (6).
The efficacy of zinc interventions is frequently assessed using

PZCs as a biomarker of Zn status in humans. PZC responds to severe
Zn deficiency with clinical Zn manifestations, changes during Zn
supplementation, and adapts to alterations in whole-body Zn balance
(5). Clinical signs of Zn deficiency are developing progressively with
reduced PZC, there is a clear direct association between the two
parameters. Severe dietary Zn depletion, less than 1 mg Zn/day,
produces a prompt and marked decline in PZC (7). While this is the
case over a short period of time, homeostatic mechanisms maintain
PZC within the physiological range, so the levels are not sustained
over a prolonged period (4). PZC responds consistently to Zn
supplementation, it reacts rapidly, within 5–10 days in all population
groups, even to very low additional intakes of approximately 2 mg
Zn/day (3, 4).

Zn supplementation increases PZC and after the withdrawal
of Zn supplementation, the PZC returns to baseline levels within
one to two weeks (5). PZC predicts a growth response to Zn
supplementation only when the initial mean PZC is low enough
indicating a moderate to severe Zn deficiency (5).

At the population level, PZC has responded to dietary
manipulation in all population groups, and equally in depletion and
supplementation studies in apparently healthy individuals (3, 5, 8).
Every doubling of Zn intake contributes to a 6% difference in PZC
(4). Yet, at the individual level, the association between PZC and Zn
intakes is not that strong or consistent (5, 9).

For example, similar PZC was measured with intakes of 2.8 mg/kg
as well as with 40 mg/kg, showing the inability of PZC to reliably
represent dietary Zn intakes (9, 10). Complexities in evaluating an
individual’s typical dietary Zn intake, Zn bioavailability, and Zn
absorption, physiological states, presence and stage of inflammation,
and differences in Zn absorption and Zn metabolism depending on
the provision routes (i.e., Zn provided as supplement with or between
meals vs. Zn given with various types of foods) make the process
of assessing an individual’s Zn status by merely using PZC even
more challenging (11). PZC remains normal even when disrupted Zn
determined immunological processes are present (12). PZC changes
less effectively in response to moderate modifications in dietary Zn
intakes (3–5 mg Zn/day); 24 weeks of Zn restrictions are needed for
the changes in PZC (13).

A meta-analysis of high-quality studies on the association
between PZC and dietary Zn intake demonstrated a high degree of
discrepancy in all population cohorts (5). No association of serum Zn
with dietary or supplemental Zn intakes was seen in the NHANES
study even though 8% of participants had serum Zn levels below the
cut-off for Zn deficiency (14). No changes in PZC were seen after the
consumption of Zn biofortified grains and foods either in children
or adults (15–18). Additionally, PZC does not respond to short-term
exposure to Zn fortified foods. However, certain functional changes
may still occur without the changes in PZC, and this demands
further investigation.

Furthermore, there is substantial interindividual variability in
the way PZC respond to dietary Zn changes. Time of consumption

of a meal, diurnal variation, sex, age, pregnancy, food intake,
contraceptive use, hormones, and some drugs contribute to
inconsistencies in PZC (5, 19). PZC varies by up to 20% during
the day, predominantly due to meal consumption, and time of day
(19–21). Generally, food intake produces a decline in PZC (20).

The highest PZC is measured early in the morning after an
overnight fast, before breakfast, and then the levels gradually decrease
for several hours after food intake and rise again prior to the next meal
(21). PZC reacts to several physiological and pathological conditions,
PZC is decreased during pregnancy and intense physical activity, in
acute and chronic infections (3). Tissue catabolism during starvation
can release Zn into circulation and increase PZC (3).

PZCs change after meals, during infections, inflammation,
hemolysis, and under stress and trauma (22). Zn concentrations in
plasma fluctuate during the menstrual cycle (23). Lower PZCs are
measured in people with obesity, hyperinsulinemia, hypertension,
hyperlipidemia, chronic inflammatory disease, and those undergoing
surgery (24–26).

In summary, the latest consensus is that although not as
consistent and reliable as biomarkers used for most medical
conditions and some specific nutritional deficiencies, PZC is the
best biomarker of population Zn status and predictor of functional
responsiveness to Zn interventions in humans. It is a biomarker
of exposure and of the risk of clinical Zn deficiency. PZC is a
useful indicator of severe to moderate Zn deficiency and responds
consistently to Zn supplementation. Nevertheless, PZC is less
responsive when additional Zn is provided with food. Similarly, PZC
predicts functional changes to Zn interventions only when initial
PZC is very low. Furthermore, PZC does not necessarily reflect
cellular Zn status due to very tight homeostatic control mechanisms
that keep PZC within a narrow range. PZC on its own is not
effective in assessing the impact of various dietary Zn interventions,
particularly when the change in Zn intake is marginal, thus a more
sensitive and specific indicator is needed to identify early-stage Zn
deficiency states. The World Health Organization points out that the
development of more suitable Zn biomarkers is still a high priority
(26). Further research is required to identify and evaluate potentially
more useful bioindicators of Zn status with increased sensitivity and
specificity and responsive to modest changes produced by diet-based
Zn interventions in humans.

Evaluation of the accuracy and
usefulness of available Zn status
biomarkers

The latest publicly available review paper that evaluated the
usefulness of existing biomarkers of Zn status in humans is the
Biomarkers of Nutrition for Development (BOND) Zinc Review
published in April 2016 (5). After reviewing Zn biomarkers,
The BOND Zinc Expert Panel separated indicators into three
classes: potentially useful (hair, urinary Zn, and neurobehavioral
function) emerging (nail Zn, taste acuity, Zn kinetics, and Zn
dependent proteins), and non-useful Zn biomarkers (erythrocyte
and leukocyte Zn and Zn dependent enzymes). Shortly after,
in September 2016, another review paper issued by Lowe (27)
additionally assessed the potential and emerging biomarkers
originally identified by the BOND.
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Based on data from systematic reviews, the only other two
recommended indicators, besides PZC, were dietary Zn intake and
height-for-age of growing infants and children (5, 27).

Zn dependent enzymes and proteins, hair Zn concentrations,
neurobehavioral function, markers of inflammation, taste acuity,
DNA damage, and oxidative stress have been revised, and while some
promising supporting evidence was shown, none of the biomarkers
were endorsed, pointing out that further research is needed before
any of these biomarkers can be used for evaluating Zn status of
individuals or populations.

A systematic review is currently underway, updating the
Biomarkers of Nutrition for Development (BOND)-Zinc Review, to
determine which indicators accurately demonstrate changes in Zn
status in response to Zn supplementation or depletion [Rasgado et al.
(28) PROSPERO, CRD420202198431] and once released, is expected
to provide some new insights.

Back in 2016, the diagnostic performance of fatty acid desaturases
1 and 2 (FADS1/2) for predicting Zn deficiency/adequacy was not
carefully assessed as there was a limited number of trials reporting
on the proposed interactions, and none of the currently published
human studies had been completed. Insufficient information on
the activity of Zn-dependent desaturase enzymes was available at
the time to draw robust evidence-based conclusions. Over time, an
increasing body of evidence has accumulated to suggest that the
linoleic acid: dihomo-γ-linolenic acid ratio (LA: DGLA) can be used
as an additional, potentially more sensitive, biomarker of Zn status,
both in animals and humans (29–35).

As shown by a recent systematic review FADS1 and FADS2
can be considered as candidate biomarkers for assessing Zn
status and effectiveness of low dose Zn interventions, however
additional research is needed to clarify the proposed associations
and applicability of utilizing fatty acid desaturase activities as Zn
status biomarkers while adjusting for all associated covariates and
confounders (35).

This review summaries all potential currently identified
confounders and covariates that should be taken into consideration
when proposed relations are examined and presents a comprehensive
list of recommendations for further research on this topic.

The biochemical and dietary basis for
the causal association between Zn
and FADS1 and FADS2 activity

FADS1 (15 Desaturase, D5D) and FADS2 (16 desaturase, D6D)
are membrane-bound desaturase enzymes involved in the synthesis
of n-6 and n-3 sequence of polyunsaturated fatty acids from dietary
linoleic acid and α-linolenic acid (36). Both enzymes are extensively
expressed in the human tissues with the highest levels found in the
liver (37). Delta 6 desaturase converts linoleic acid (18:2n6, LA) to
γ-linolenic acid (18:3n6, GLA). GLA is then elongated to dihomo-
γ-linolenic acid (DGLA, 20:3-6) by delta 6 elongase (Figure 1).
Delta-5 (D5D) and delta-6 desaturases (D6D), coded respectively by
FADS1 and FADS2 genes, are the rate-limiting enzymes for PUFA
conversion. The 16-catalyzed step necessary for the conversion of

1 https://www.crd.york.ac.uk/prospero/display_record.php?ID=
CRD42020219843

LA to DGLA is the highest flux pathway, thus we propose that an
increase in the LA/DGLA ratio could be a sensitive indicator of Zn
deficiency (below presented findings).

Structurally, these two enzymes are very similar, they both
have an N-terminal cytochrome b5 domain-carrying heme-binding
motifs, two membrane-spanning domains, and three histidine-
rich motifs HX3-4H, HX2-3HH, and H/QX2-3HH (37, 38). The
glutamine is essential for delta 5 and delta 6 activity and it usually
replaces the first histidine-rich motif (Figure 2; 37). Human FADS1
and FADS2 genes are confined on chromosome 11, and both genes
are composed of 12 exons and 11 introns. Considering the closeness
of their promoters, the transcription of both genes in delta 5 and
delta 6 desaturases are rate-limiting steps in the synthesis of PUFA
as the enzyme catalyzes the addition of a double bond at the sixth
carbon-carbon bond position from the carboxylic acid end in fatty
acids (39).

Finally, NADPH reductase, an enzyme essential for FADS1/2
activity, is known to be Zn dependent (40, 41). Zn is an important,
but not necessarily a unique and exclusive, cofactor in the metabolism
of essential fatty acids (42) involved in at least two stages, conversion
of LA to GLA and mobilization of DGLA to ARA (43, 44). Both delta
5 and delta 6 desaturases are represented as Zn-dependent enzymes
(40, 44).

The factors affecting the expression of FADS1 and FADS2 are
not entirely known. Some believe that the activity of desaturases may
be affected by tissue-specific mechanisms that involve both pre- and
post-translational actions (39). Others consider that the regulation
is accomplished by the feedback control of the transcriptional
regulation of fatty acid desaturase genes, facilitated via signaling
pathways triggered by sensors inserted in cellular membranes, in
response to environmental factors (45). FADS1 and FADS2 are
target genes for proliferator-activated receptors for transcriptional
regulation. Two Zn finger domains are crucial for the appropriate
functioning of this protein (46; Figure 3). Zn deficiency causes
modifications in proliferator-activated receptors signaling, and Zn
treatments induce the expression of target genes (47).

Once it was noted that deficiencies of fatty acids and Zn presented
clinically similar symptoms, a close association between the two
was anticipated (43, 48). The potential link between impaired FADS
activity and reduced metabolism of essential fatty acids caused by
dietary Zn deficiency was initially shown in the early 1980s in
animal models (44, 48–51). A low-Zn diet was associated with
decreased activity of fatty acid desaturase enzyme 1 (FADS1) and
lower integration of arachidonic acid into lipid subclasses signifying
that FADS1 activity may among other factors, respond to slight
alterations in dietary Zn intake (52). Over the years, this hypothesis
was confirmed by others (30, 32–34, 53, 54).

In summary, findings from several studies imply that Zn
deficiency or inadequate dietary Zn intake, among all other possible
factors, could contribute to reduced activity of desaturase enzymes
and that changes in FADS1 and FADS2 activity should be additionally
examined as possible new markers for estimating Zn status.

Potential covariates and confounders
of Zn and FADS1/FADS2 interrelations

The multifaceted roles of Zn and fatty acid enzymes imply
that an interaction between Zn and FADS1 and FADS2 activity is
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FIGURE 1

Metabolic pathway of n-6 fatty acids. Since the elongation steps are quick and the desaturation steps much slower, desaturases are regarded as the
rate-limiting steps. LA, linoleic acid; GLA, γ-linoleic acid; DGLA, dihomo-γ-linolenic acid; ARA, arachidonic acid; DTA, docosatetraenoic acid; DPA,
docosapentaenoic acid.

FIGURE 2

Visual presentation of the structure of a 16 desaturase enzyme. Zn regulates NADH-NADPH cycle. Cytochrome P-450 activity is considerably diminished
under Zn deficiency. NADH, nicotinamide adenine dinucleotide hydride; NADPH, nicotinamide adenine dinucleotide phosphate-oxidase.

almost certainly affected by various covariates and cofounders, most
of which are yet to be determined and sufficiently and adequately
examined. Currently available data indicate that dietary intake of
macro and micronutrients, polyphenols, certain medical conditions,
inflammatory conditions, provision of Zn in fasted or non-fasted
states may affect the proposed Zn-FADS1 and FADS2 interrelations
(Figure 4), suggesting that FADS activity may not be entirely specific
for Zn status, an assumption that requires further research.

Gender age and ethnicity

The role of gender, age, and ethnicity are additional factors that
have not yet been studied in the context of Zn and essential fatty acid
metabolic pathways. Lohner et al. (55) conducted a systematic review
to explore gender difference in the long-chain polyunsaturated fatty
acid status in human populations.

Analysis of data from 51 studies reporting fatty acid composition
of plasma and erythrocyte membrane lipids and adipose tissue,
revealed a higher contribution of the n-6 essential fatty acids,
arachidonic acid, and docosahexaenoic acid to plasma total lipids and
plasma phospholipids in women compared to men (55). There were
no gender differences for linoleic (LA) and α-Linolenic acid (ALA).
Higher activity of desaturases, mainly delta 6-desaturase contributed
to the higher arachidonic acid (AA) and docosahexaenoic acid
(DHA) values found in women (55).

Women have a higher capacity to synthesize DHA to LA than
men, as shown by both animal and human stable isotope studies
(56). Examination of desaturase activities in relation to gender in rats

demonstrated that delta 5 and delta 6 desaturases activity was one to
three times higher in females than in males. The delta 5-desaturase
protein was higher and the mRNA expression of delta 5 and delta 6
desaturase genes was 3.8 and 2.5 times greater in females (56). Similar
findings were provided by Guo et al. (57) lipid indicators differed
between men and women in the Chinese adult population. However,
contradictory findings were also reported, showing lower levels of
delta 6 desaturase were measured in Swedish women (58). Burdge
et al. (59) found no statistically significant differences in fatty acid
composition among men and women.

The effects of gender and sex hormones on essential fatty acid
metabolism in humans have been examined in depth by Childs

FIGURE 3

PPARs form a heterodimer with RXR and simultaneously they bind to
the PPAR response element for transcriptional activation of FADS1 and
FADS2 genes. Both, PPARα and RXR have in the DNA binding domain
characteristics Zn fingers domains essential for appropriate function
of the protein. Thus, Zn plays an essential role in the function of these
transcription factors. PPARS, The peroxisome proliferator-activated
receptors, RXR, Retinoid X receptor, PPRE, PPAR response element.
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FIGURE 4

Potential covariates and confounders of dietary Zn intervention and FADS1/FADS2 interrelations.

et al. (60). Testosterone inhibits, while estrogen stimulates the
transfer of essential fatty acids into their longer-chain metabolites
(61). Loss of desaturase activity was reported due to reduced
estrogen (62, 63). The use of hormonal contraceptives is also
influencing fatty acid status (64), epigenetic modifications, i.e., DNA
methylation, that affect desaturase activity differ among genders
(65). While none of the presented findings directly confirm the
influence of gender on fatty acid metabolism of people consuming
Zn enriched diets, it clearly shows that gender-associated differences
exist and should be taken into consideration. As stated by
Lohner et al. (55) in studies reporting fatty acid composition in
serum phospholipids, serum total lipids, or erythrocyte membrane
lipids, gender distribution should be regarded as a significant
potential confounding variable. Thus, gender differences in fatty
acid status and hormonal regulation should be considered as
covariates when examining the influence of Zn interventions on fatty
acid metabolism.

The influence of aging on fatty acid composition has been
investigated over the years. Delta 6 desaturase activity is shown
to be reduced in the elderly compared to middle-aged healthy
Tunisian subjects, by 10 and 24% in men and women (66).
Decreased delta 6 activity due to aging has been described in
animals (67) and humans (52, 68). In post-menopausal women,
aged ≥51 years, the values of the n-6 polyunsaturated DGLA
and AA were significantly higher in women compared to men
of comparable age, while DHA values did not differ among the
genders (55). In the age category, 13–50 years, out of all fatty
acids assessed, DHA levels were considerably higher in women,
while DPA values were significantly lower in women compared
to men (55). Finally, as dietary habits are considerably affected
by aging (69), an adequate assessment of dietary patterns is
essential when interrelations among fatty acid levels, Zn status, and
aging are examined.

Furthermore, significant ethnic differences in desaturase
activities have been reported. A comparison of data from African
Caribbeans, Asian Indians, and white Europeans revealed that
delta 5 desaturase was highest in African Caribbeans, while delta 6
desaturase activity was lowest in Asian Indians (70).

Comparison of reported delta 6 desaturase levels among studies
in White Caucasians (31) and Asians (71) demonstrate lower levels
of delta 6 desaturases in Asians. There were statistically significant
differences in FADS2 performance between Caucasian and non-
Caucasian children, while no difference was reported for FADS1
activity (72).

There are several reports of differential effects of FADS
polymorphisms on delta 5 and delta 6 desaturation indicators
depending on ethnicity. Delta 5 activity was significantly lower in
white Europeans relative to African Caribbean women.

Higher arachidonic acid levels have been described in people
of Black African origin, showing ethnic differences in the FADS1
genotype (73). Ethnic-specific effects of FADS polymorphism on
desaturase activity in Caucasians and East Asians were shown by
(74). Overall, the lowest levels of delta 6 desaturase are reported in
Asians and the highest in Africans. However, specific studies of ethnic
differences in the FADS1 and FADS2 gene expression in respect to Zn
status are yet to be conducted.

Estimated desaturase activities differ among metabolically
healthy and unhealthy individuals, lower delta 6 desaturase, and to
some extent lower delta 5 activity, were reported in people with an
elevated risk of cardiovascular diseases, diabetes, obesity (75). There
was a direct positive association between the markers of obesity and
FADS2 activity and an inverse association with FADS1 in a Swedish
study, with relationships being independent of body mass index and
physical activity (58). Delta 5 desaturase activities were also shown
to be inversely related to metabolic dysregulation (76, 77). FADS1
activity was significantly associated with an increased risk of type 2
diabetes in Japanese population (78).

Additionally, a significant number of studies to date have
confirmed the link between dietary Zn intake/Zn status with
obesity, hyperinsulinemia, hypertension, hyperlipidemia, chronic
inflammatory disease, cardiovascular diseases (24–26). It is important
to note that even in these instances when disturbed metabolic activity
is present, Zn status was directly inversely associated with delta
6 desaturase activity (33, 34, 79). However, what remains unclear,
and certainly requires further investigation, is whether dysregulation
of desaturases, usually coupled with reduced Zn levels, is a reason
for or a result of metabolic disturbances. As these factors are
closely interrelated, the extent to which desaturase activity acts
as specific biomarkers of Zn status and metabolic health requires
further investigation.

Dietary components

Dietary habits have a major influence on the fatty acid
composition in tissues (80). All classes of macronutrients (fats,
proteins, and carbohydrates) as well as some minerals and other
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dietary components including polyphenols, have been shown to
influence mRNA expression and activity of desaturase and elongase
enzymes (81) which suggests that FADS1 and FADS2 are not
exclusively responsive to modifications in dietary Zn intake and that
FADS activity is not specific to Zn status.

The fat content of diets has been shown to be an important
element in fatty acid metabolism, both in terms of quantity and
composition, as demonstrated by both animal and human model
studies (82, 83). Repressed activities of delta 5 and delta 6 desaturase
and elongases were seen in animals on high fat diets (84, 85) a tissue-
specific regulation of desaturase activities in response to high-fat diets
has been reported (86).

Likewise, a suppressed delta 6 desaturase activity was shown when
the effect of provision of high-fat diet with 40% of fat was compared to
a low-fat diet, 20% fat, in a crossover human trial in post-menopausal
women (83). Furthermore, inconsistent findings are found on the
effect of diets deficient in essential fatty acids; both increased (87–
90) and decreased (91, 92) delta 5 and delta 6 desaturase and elongase
activities were reported. Similarly, diets enriched in polyunsaturated
fatty acids are shown to reduce the activity of delta 5 and delta 6
desaturases (93). Diets rich is saturated fats and cholesterol tend to
suppress activities of both desaturases (85, 94–97).

The available evidence demonstrates that both the quantity of
fat as well as the fatty acid composition influence the activity
of desaturases. Appropriate quantitative assessment of dietary fat
intake during Zn intervention trials is necessary to ensure that any
observed changes in the activity of desaturases are not confounded
by differences in dietary fat intake. Each of the individual factors,
i.e., the amount of fat, as well as the type of fat, represent important
confounding factors between Zn-fatty acid relations and should
be carefully examined. Tissue-specific regulation of desaturases is
another important aspect to be considered.

Some authors propose that measurement of fatty acid
composition of blood lipids and adipose tissues can augment
dietary assessment methodologies (98). In addition, it was shown
that even though red blood cells lack desaturases and elongases, the
fatty acid composition of their membranes reflects liver synthesis,
and as it is less affected by variations in fatty acid intakes it should be
used in preference to plasma/serum fatty acid ratios (99, 100). The
rate of changes in the fatty acid composition of fatty acid in red blood
cell membranes is slower than that seen in plasma lipids (101).

The relation between fatty acid metabolism and dietary
carbohydrates has been examined over the years, providing
consistent evidence of increased FADS2 expression in response to
high carbohydrate diets in male rats (102) and in mice (103). The
quantity of carbohydrates matter, for example, provision of sucrose,
30%, lead to reduced delta 5 desaturase activity (104, 105) with
no changes in delta 6 enzyme activity (105). In contrast, 62.5%
sucrose rich diet increased both FADS1 and FADS2 hepatic gene
expression (106).

In addition, high protein diets/extra protein intake stimulate
desaturase activity. Increased delta 6 desaturase action was measured
in rats fed an excess protein diet, 35% of protein, vs. rats on
high protein diets with 25% of protein (87). The type of protein
consumed is also important, casein fed rats reported to have
improved microsomal delta 6 activity (107). Supplementation with
L-cysteine, L-glycine, and L-methionine increased delta 6 activity
even further, with the highest effect being observed with the addition
of L-methionine (108). In conclusion, it seems that FADS1 and

FADS2 expression is influenced by dietary protein, and additionally
by specific amino acids, but this requires further examination.

Polyphenols can affect fatty acid synthesis. Increased FADS1
and FADS2 mRNA expression was measured in HEpG2 cells
supplemented with resveratrol (109). Liver estimates for delta 5
and delta 6 desaturase activities were increased in anthocyanin
supplemented group of rats (110). FADS2 gene expression was
higher in chickens supplemented with isoflavone compared with
controls (111).

In addition to Zn, desaturases are shown to be affected by other
minerals. For example, a calcium-deprived diet provided for 60 days
to rats produced a 45–55% decrease in delta 6, and a 30% inhibition
in delta 5 desaturase activity, correspondingly (112), impaired delta 6
and delta 5 desaturase activities were seen in the liver of rats supplied
with suboptimal iron levels (113, 114). Data from iron deficient
individuals support the findings, iron deficient diets impair activity
of both desaturases (115, 116).

Given the widespread occurrence of low calcium intake and iron
in low- and middle-income countries, the potential implications of
this finding should not be overlooked and deserves further research.
Copper has also been shown to affect fatty acid metabolism (117).
Modified Cu/Zn ratios in the plasma were associated with an altered
fatty acid profile in subjects with dyslipidemia, the Cu/Zn ratio was
directly linked to alpha-linolenic acid (33). Likewise, Cu/Zn ratio was
directly correlated with elongase activities in hemodialysis patients
(79). Increased delta 6 desaturase activity was observed with the
addition of Cu (33, 118, 119).

The plasma Cu/Zn balance is altered in many disease states; a
disturbed Cu/Zn ratio may be an active modifier of the LA/DGLA
ratio and desaturase activities, so an examination of Zn-fatty acid
relationships in unhealthy cohorts should encompass the analysis
of both nutrients.

A dose dependent increase in FADS2 expression was seen
in rats supplemented with retinoic acid (120). Zolfaghari et al.
(121) reported decreased FADS1 expression in rats on diets with
4 mg of retinol compared with rats consuming vitamin A deficient
diets. Vitamin A increased hepatic phospholipid activity of both
desaturase enzymes (122). A few studies that examined the effect
of folate/vitamin B-12 on desaturases provided ambiguous results,
yet they indicate that these vitamins may have a role to play in
the process and they should be taken into consideration in further
research (123, 124).

FADS1, FADS2, Zn intake and Zn
status interrelations–animal
experiments

The effect of Zn deficiency on FADS1/2 performance was initially
examined in the early 80s by Cunnane and Wahle (125), Clejan et al.
(49), and Ayala and Brenner (44). Consistent findings were reported,
Zn deficiency contributed to reduced activity of both enzymes, delta
5 and delta 6 desaturase.

Cunnane and Wahle (125) were the first to demonstrate that
Zn modulates linoleic acid metabolism in rat mammary glands,
by modifying the desaturase activity of microsomes. In their
experiment, 38 Sprague-Dawley rats were provided either a purified
Zn-supplemented or a Zn-deficient diet for 6 weeks, and the effect
of Zn deficiency on the fatty acid composition of plasma lipids and
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microsomes of the liver, intestine, and testes were explored. Among
the polyunsaturated fatty acids, DGLA was significantly reduced in
the rats consuming the Zn-deficient diet. The Zn-depleted rats also
had a 25% reduction in delta 6 desaturase activity in liver microsomes,
while delta 5 desaturation was decreased by 53%. Furthermore, Zn-
deficient rats had hypertriglyceridemia, and Zn supplementation
restored serum triglycerides levels to normal which demonstrates a
strong physiological link between Zn and essential fatty acids and
demonstrates that Zn deficiency might be accountable for attenuated
desaturase activities (125).

Similar findings were provided by Ayala and Brenner (44)
who assessed the influence of Zn on desaturating enzymes of liver
and testes microsomes and their effect on fatty acid and lipid
modifications of tissues using male weaning Wistar rats. Zn-adequate
(55 ppm of Zn) or Zn-deficient diets (1.2 ppm of Zn) were given to
rats for 60 days.

A decrease of essential fatty acids of the linoleic family in plasma
was apparent after only 18 days, which implies that Zn deficiency
could produce a rapid change in desaturase activity (44).

Zn deficiency contributed to modifications in both FADS1
and FADS2 activities but to a different extent. The identical
level of Zn deficiency produced a 45% decrease in FADS2,
while FADS1 action was entirely diminished (44). However,
when the interaction between Zn deficiency and desaturase
activity was examined in the presence of different types of
dietary fats (coconut, linseed, and sunflower oils), Zn deficiency
had no negative effect on desaturases action (48, 126, 127).
It seems that the type of dietary fats affects the desaturase
actions. Fat-free diets improve the activities of desaturases
considerably, while diets with high levels of polyunsaturated
fatty acids suppress them.

The idea that the impact of Zn deficiency on lipid metabolism
may be affected by the type of dietary fat consumed was also
demonstrated by Waldhauser and colleagues in 1999 (128). Four
groups of rats were fed Zn-adequate (45 mg Zn kg−1) or Zn-
deficient (0.5 mg Zn kg−1) diets with olive oil or linseed oil
as the source of fat. The rats were force-fed by gastric tube for
13 days to ensure comparable food intake. The results confirmed
that Zn deficiency impacts the metabolic balance of n-3 and n-6
polyunsaturated fatty acids. In the rats fed linseed oil, Zn deficiency
produced a marked increase in the ratio between n-3 and n-6
polyunsaturated fatty acids in liver phospholipids, while in the rats
fed olive oil, Zn deficiency had only slight effects on the fatty acid
composition of the liver phospholipids. Similarly, the composition
of dietary fat affected only hepatic delta 6 desaturase enzymatic
activity (128).

In addition, the consumption of an essential fatty acid-deficient
diet is shown to be paralleled by a similar rise in the hepatic
abundance of FADS2 and the increase in hepatic delta 6 desaturase
activity (52) whereas delta 6 desaturase action was very low in non-
hepatic tissues (129). However, when essential fatty acid deficiency is
of metabolic origin, i.e., caused by Zn deficiency, desaturases activity
is reduced (50). Finally, the inhibition of the desaturases by Zn
deficiency is intense and produces a more rapid decline in tissue
arachidonic acid and docosahexaenoic acid than does the immediate
dietary deficiency of all the omega 6 or omega 3 polyunsaturated fatty
acids (130).

To clarify inconsistencies and confirm that the effect of Zn
deficiency was not mistakenly misconceived by low food intake, Eder
et al. in 1995 examined the role of Zn in desaturase activity by a series

of experiments with Zn-deficient rats using a force-feeding technique
that ensures equal food intake between the intervention groups.

In Zn-deficient rats fed a diet comprising of 5% safflower oil
lower levels of total polyunsaturated fatty acids were measured than
in rats fed a Zn-adequate diet. The findings were clear, Zn status had
an evident role in delta 5 and delta 6 desaturation in subjects with
appropriate food and energy intake. Furthermore, in animals fed fat-
free diets, the effect of Zn deficiency on delta 6 desaturation activity
was even more noticeable (48).

When the role of Zn on delta 6 desaturase activity was evaluated
using a chicken (Gallus gallus) model comparable findings were
provided, the concentration of DGLA decreased and the LA/DGLA
ratio increased in animals with lower dietary Zn intakes (30, 31, 33).
Once Zn-adequate control (42.3 µg Zn g−1) or Zn-deficient diets
(2.5 µg Zn g−1) with identical fatty acid content were provided to
birds for 4 weeks the expression of hepatic delta 6 desaturase was
notably higher in the control group, and the LA/DGLA ratio was
elevated in the low Zn compared to the control Zn group, 22.6 ± 0.5%
and 18.5 ± 0.5% w/w, correspondingly.

The erythrocyte LA/DGLA ratio differentiated Zn status among
Zn-adequate and Zn-deficient subjects. Furthermore, differences in
the LA/DGLA ratio were evident within 7 days, signifying that the
ratio can show changes in the dietary Zn status quickly and can detect
early stages of Zn deficiency/inadequacy that generally, due to the
lack of apparent symptoms stay unrecognized.

Similar findings were reported when the efficacy of the LA/DGLA
ratio to predict the Zn status of animals consuming Zn biofortified
wheat-based diets was examined (33). Two groups of birds (n = 15)
were fed two different diets, a “high-Zn” diet (46.5 ppm Zn) and
a “low-Zn” diet (32.8 ppm Zn), for 6 weeks. The expression of
hepatic delta 6 desaturase had lower mean values and consequently
the erythrocyte LA/DGLA ratio was higher in birds fed low-Zn diets.

A 14-ppm differential in dietary Zn content was sufficient to
detect differences in the LA/DGLA ratio among the groups, which
additionally confirms the sensitivity of the marker to respond to
changes in dietary Zn intake (33). Serum Zn concentrations of
the birds were also measured, in both studies, higher values were
reported in the Zn control versus the Zn-deficient diet group of
birds (30, 32). There was a relative increase in gene expression
of the cytokines: interleukin 1 beta (IL-1β), interleukin-6 (IL-6),
and tumor necrosis factor-alpha (TNF-α) in the control group.
Other measured parameters, i.e., Zn transporters (i.e., Zip6, Zip9,
ZnT1, ZnT5, ZnT7); transcription factor: nuclear factor kappa B
(NF-κB); brush border enzymes: Na + K + ATPase, sodium-
glucose transport protein 1 (SGLT-1), aminopeptidase, sucrose-
isomaltase, and binding metallothionein-4 protein (MT4) were
not noticeably different between the groups in the first study,
while a higher mean value in the tissues collected from the
birds fed a low-Zn diet was observed in the second study.
Longer study duration may be an explanation, as longer period
is needed for the detection of changes in gene expression of
various Zn transporters. The expression of the hepatic FADS2
gene was investigated in both studies and demonstrated a
significant alteration in delta 6-desaturase gene expression in
the experimental group with higher dietary Zn intakes (30,
33). Comparable data were provided by Beasley et al. (131), a
reduced LA/DGLA ratio was measured in birds after 2 weeks of
consumption of nicotianamine enriched Zn and Fe biofortified
wheat-based diets.
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Finally, consistent findings were reported in humans, the
concentration of plasma DGLA was decreased and the LA/DGLA
ratio was increased in apparently healthy people with lower dietary
Zn intakes (32). However, while there was a significant difference
in DGLA production and the LA/DGLA ratio between the groups,
the PZC stayed unchanged, probably due to the effective homeostatic
regulation of Zn absorption. Additionally, plasma/serum Zn may not
be sufficiently sensitive to detect relatively small differences in dietary
Zn intakes, compared to the LA/DGLA ratio.

Human studies–uncontrolled
nutrient (dietary) intervention and
human randomized controlled trials

The NHANES study involving more than 1,500 participants
demonstrated a negative correlation between serum LA/DGLA ratio
and serum Zn status, with statistical significance seen in men only
(132). However, while correlations of the LA/DGLA ratio with Zn
intake adjusted for energy intake were not statistically significant,
they showed negative associations between the assessed parameters
in women, while a positive interaction was found in men, which
points out that gender differences may have a role to play. Finally,
the provision of foods rich in Zn and poor in polyunsaturated fatty
acids was adversely associated with serum LA/DGLA ratio (132).

In a 10 weeks Zn controlled feeding trial conducted on thirty-six
healthy adult men, 18–51 years of age, in participants who consumed
Zn biofortified wheat bread (1.6 mg/day of additional Zn) for 6 weeks
increased FADS2 and decreased FADS1 activities were reported, with
no changes in plasma Zn concentrations, DNA strand breaks or blood
glutathione concentrations (35). This clearly shows that the activity
of desaturase enzymes is much more sensitive to subtle changes in
dietary Zn intakes than all other measured parameters.

Comparable findings were reported by Suh et al. (133), dietary Zn
modulates the metabolic pathway of lipids. No changes in PZC but
alterations in lipid metabolism were seen in eighteen 19–50 years old
men exposed to Zn biofortified rice. FADS2 activity was increased,
by 56%, during the provision of diets containing 6 mg of Zn/day
and 1.5 g of phytate for 2 weeks. A considerable, 126%, increase in
FADS2 activity was reported when a diet containing 10 mg Zn/day
with no phytate was provided for 4 weeks to this group of men (133).
On the other hand, FADS1 activity was decreased by 29 and 45.6%
during the provision of two diets, correspondingly. The activity levels
of both desaturases returned to baseline following the provision of
25 mg Zn/day for 3 weeks.

Similar negative correlations between the LA/DGLA ratio and
dietary Zn intake and Zn status were also seen in people with
underlying chronic conditions. Takic et al. (79), reported a negative
correlation of the ratio with both dietary Zn intake and serum
Zn status in 40 Serbian adult patients undergoing hemodialysis.
A cross-sectional study conducted in China on 232 community-
dwelling subjects, 35–60 years of age, with hypertension described
an indirect association between delta 6 desaturase activity and serum
Zn levels (71). Yari et al. (134) described lower delta 6 and higher
delta 5 desaturase activity in type 2 diabetes middle age and older
men patients with lower serum Zn concentrations, pointing out that
higher serum Zn concentrations were associated with a lower risk of
developing type 2 diabetes. Finally, a prospective study performed
on 661 men, 42–60 years of age, demonstrated that higher delta

5 and lower delta 6 desaturase activity was associated with higher
serum Zn concentrations, and a lower risk of developing metabolic
syndrome (135).

Besides observational studies, the effect of Zn interventions/Zn
deficiency on fatty acid enzyme activity was additionally examined
in randomized controlled trials (17, 34, 100). A 20-week, double-
blind randomized controlled trial conducted in 186 school-age
Beninese children, provided with water filtered with Zn fortification
or a placebo chamber, demonstrated that Zn status plays an
important role in fatty acid desaturation. At the baseline, plasma
Zn concentration was directly correlated with DGLA and LA/DGLA
ratios, and Zn deficiency lead to an interruption of delta 6 desaturase
activity, hindering the conversion of LA into DGLA (34).

On the other hand, no similar effect was observed for delta 5
desaturase activity which indicates that FADS1 expression may not
be affected by dietary Zn intake and Zn status, or at least, not under
certain conditions.

Contrary to previous findings, no statistically significant
differences in the LA/DGLA ratios were reported in groups of
children receiving either a daily portion of Zn-fortified, filtered water
with an average 2·8 mg Zn/d, or non-fortified filtered water, mean
dietary Zn intake was 8.1 mg/day (34).

However, increased Zn intake for 20 weeks significantly decreased
ALA and prevented the reduction of nervonic acid, a longer chain n-9
monounsaturated fatty acid, in plasma total phospholipids.

This means that Zn, besides affecting desaturase activity and
n-6 fatty acid composition, may also influence the activity of the
fatty acid elongases in the n-9 synthesis pathway which requires
further investigation.

A recent double-blind randomized controlled trial found no
changes in FADS1 nor FADS2 activities in Bangladeshi preschool
children, fed Zn biofortified rice diets (providing 1 mg of Zn/day) for
9 months (18). Several reasons might explain the lack of interaction
between desaturases activity and dietary Zn intake. Children were
severely Zn deficient and stunted, and as in these situations,
infections and inflammation are frequently found, thus these factors
may have confounded the interpretation of the outcome measures.
Besides, the additional dose of 1 mg of Zn/day might not have been
sufficient to result in changes in desaturase performance even in
presumably zinc deficient children.

Analogous findings were provided when the efficacy of Zn
biofortified wheat in improving Zn status of consumers was assessed
by an individually randomized, double-blind, placebo-controlled
cross over study conducted in fifty Pakistani households (136).
Although a significant increase in PZC levels were seen after 4 weeks,
no changes in PZC and desaturase activity levels were present after
8 weeks of dietary intervention. Low dietary Zn intake contributes
to reduced FADS activity, but no statistically significant associations
were achieved (136).

Several facts could explain this lack of significant association; the
short duration of the intervention, inability to measure inflammatory
markers and adjust PCZs accordingly, the likely presence of
inflammation (as assessed by Cu to Zn ratio), and the fact that the
study had a relatively small sample size and was not powered to detect
variations in FADS activities.

The effect of a 24-month Zn supplementation (30 mg elemental
Zn) on membrane fatty acid composition was investigated in patients
with type 2 diabetes. The study revealed an increase in the abundance
of polyunsaturated fatty acids and improved flexibility of red blood
cell membranes (48). The enzymatic activity of the delta 5 and delta
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6 desaturase was unchanged by Zn supplementation. However, the
arachidonic acid abundance was greater in the Zn supplemented
group, which shows an increased enzyme activity, which most likely
was not captured by an indirect method employed for evaluation
of desaturase activity. Gene expression of FADS1 and FADS2 were
also assessed, showing an increased expression of FADS1 gene in
months 12 and 24 with respect to baseline in the Zn supplemented
group, while FADS2 gene expression was similar in Zn and the
placebo groups (100). The study findings suggest that Zn affects
fatty acid composition by modulating delta 5, instead of delta 6
desaturase activity.

Finally, experimental data imply that Zn metabolism in the
human body is influenced by food consumption, as Zn absorbed with
food ends up in the liver via the portal circulation, while Zn taken
without the food is delivered to peripheral blood plasma (137). As the
metabolism of essential fatty acids occurs hepatically, the direction
of Zn to the liver may additionally stimulate Zn contribution to fatty
acid metabolism. Differences in the effect of Zn supplementation on
FADS1 and FADS2 activities and plasma Zn concentrations were thus
examined for the same chemical form and amount of Zn supplements
provided in the fasted and non-fasted states for 2 weeks in apparently
healthy men, 15–50 years old, living in California (17).

As anticipated, increases in plasma Zn concentrations were
seen only when Zn supplements are taken without a meal, and
Zn supplementation affected fatty acid desaturation only when
supplemental Zn was provided with food (17).

There was a statistically significant difference in FADS1 activity
among participants consuming Zn with breakfast compared with
those taking Zn in the fasted state, while FADS2 activity did not differ
between the examined groups. Consumption of Zn with a meal or
without it seems to affect changes in FADS1/FADS2 activities and
should be examined further.

Additional potential and emerging Zn
biomarkers

Besides LA/DGLA ratio, some other biomarkers have emerged as
potentially useful and have been tested to a degree over the recent
years, i.e., Zn dependent proteins, nail Zn concentrations, oxidative
stress, DNA integrity, erythrocyte and leukocyte Zn concentrations,
glutathione concentrations, Zn kinetics, and taste acuity; however,
there is still unconvincing evidence for their use as Zn status
indicators (21, 29).

Zn levels of platelets, granulocytes and lymphocytes were more
efficient in revealing Zn depletion conditions than plasma Zn levels,
pointing out that cellular Zn levels may be more useful Zn status
indicators (138, 139). Thymulin and gut microbiota composition are
additional indicators proposed as possibly suitable to be employed
as accompanying biomarkers of Zn status. Recently, Cheng et al.
(140) presented Zn status index (ZSI) model, which is based on
three different indicators: LA/DGLA ratio, mRNA expression of Zn
associated proteins and gut microbiome composition.

Response of thymulin to changes in Zn
intake

Thymulin, also known as a thymic hormone, is a hormone
required for the differentiation and development of T helper cells. It is

engaged in T-cell differentiation and improvement of T and NK cell
actions (141). The amino acid structure of this non-apeptide is the
following: Pyr-Ala-Lys-Ser-Gln-Gly-Gly-Ser-Asn. Thymulin requires
Zn for its biological activity, and as such, it has been suggested as a
biomarker of Zn status (139).

The binding of Zn is linked to the biological activity of thymulin.
Two forms of thymulin exist, the first one, with Zn, is biologically
active, and the second one, deprived of Zn, is biologically inactive
(139, 142). The thymulin-Zn connection was examined in vitro
and in vivo, using different models of mild Zn deficiency, both in
animals and in humans. Insufficiency of Zn reduced serum thymulin
activity, which was corrected with a provision of Zn supplementation
both in animals and humans (139, 142–144). Serum thymulin
activity declined after 8–12 weeks following the introduction of a Zn
restricted diet (139). Zn stimulated thymulin secretion from human
thymic epithelial cells in vitro (145). Findings were supported by
others, reduced serum thymulin levels were measured in Zn deficient
mice (142, 146) and man (139, 147). Comparable data were shown
in patients with underlying chronic health conditions, sickle cell
anemia, Chron’s disease, in patients with chronic renal failure and
young cancer patients (139, 148, 149). same findings, of diminished
thymulin activity, were reported for three different Zn deficiency
model studies in humans: in subjects with dietary Zn deficiency, Zn
deficient adult sickle cell disease patients, and mildly Zn deficient
medical students. In all these subjects, Zn supplementation is shown
as beneficial in restoring thymulin action (139). Thymulin from Zn
deficient subjects included less Zn on a molar basis than thymulin
from Zn sufficient subject, demonstrating that an inactive form of the
peptide is not a cause for thymulin inactivity per se (139).

In addition, thymulin inactivity was also linked to reduced IL2
activity and changes in lymphocytes subpopulation (decrease in
T101- and increase in T4 + and T4 + /T8 + cells).

Recently, DiSilvestro et al. (150) showed that in rats fed low
Zn diets serum thymulin activity was reduced by 61%, while
serum Zn levels were decreased by 31%; thymulin is shown as
more sensitive to inadequate Zn intake than serum Zn. Further
research is certainly needed to elucidate the entire role and potential
limitations of this indicator. It would be beneficial to compare the
sensitivity of FADS1/FADS2 gene expression with thymulin activity
to determine which of the biomarkers is more receptive to changes in
dietary Zn intakes.

Response of the gut microbiome and Zn
transporters to changes in Zn intake

Zn is essential for the proper activity of certain gut bacterial
strains, and consequently Zn deficiency alters the composition of
Zn-dependent microorganisms (151, 152). Low dietary Zn intake
affects gut microbiota composition, decreases the production of
short-chain fatty acids, and alters the metagenomic potential of the
microbiota (152).

Increased abundance of Firmicutes and Proteobacteria was
reported by Beasley et al. (131), while fluctuations in bacterial
abundance of Clostridiales and Dorea genera (152) were shown
in the group of subjects on high Zn diets. Even though different
strains dominated, lower dietary Zn intakes were always coupled
with alterations in the gut bacterial composition and reduction
in the formation of short-chain fatty acids. Zn biofortified foods
have a considerable beneficial effect on gut bacterial composition,
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their consumption lowers the abundance of potentially pathogenic
bacteria, reduces inflammation, and stimulates the formation of
short-chain fatty acids producing bacteria (153).

Gene expression of Zn transporters is influenced by dietary
Zn deficiency, both decreased and increased expression has been
demonstrated (33, 152, 154, 155). Zn transporters were significantly
down-regulated in response to low Zn diet, but only in studies run
for longer periods, i.e., 6 weeks (33). Likewise, delta 6 desaturase gene
expression was down-regulated in experimental groups with lower
dietary Zn intakes (30, 33).

Recently a Zn status index was created as a potential indicator
of Zn physiological status. The model is based on three predictive
elements of Zn status: LA/DGLA ratio, microbiome analysis and
Zn-related gene expression (140). Although it looks promising,
as it reveals different levels of Zn inadequacy or adequacy, it
requires further testing, in larger, more distinct population groups,
both in healthy and unhealthy cohorts. Finally, the validity of the
model to predict Zn status/efficacy of dietary Zn interventions in
humans is needed.

Conclusion and recommendations
for further research

An indicator that uniquely defines Zn status in different
populations under various physiological conditions is still missing.
The multifaceted role of Zn in numerous processes and pathways
in the human body implies that one single biomarker may not be
sufficient and that a set of Zn indicators may be necessary to recognize
different Zn deficiency states among various populational groups.

FADS1/FADS2 gene expression could be used as an additional
physiological indicator of Zn status in humans. New findings are
very encouraging as they demonstrate that activity of desaturases,
specifically measured by the LA/DGLA ratio, responds rapidly to
changes in dietary Zn intake, both in animals and humans.

The erythrocyte LA/DGLA ratio responds to dietary Zn
manipulations, within one to two weeks. In addition, the biomarker
can detect early stages of Zn deficiency that usually, due to the lack of
evident signs and symptoms, pass unrecognized.

Indeed, further studies and dietary intervention trials are needed
to fully describe the effectiveness of this indicator and determine its
overall specificity to act as a biomarker of Zn status. The activity
of desaturases should be further examined in different settings,
controlling for potential confounders in Zn deficient populations
and population groups with a variety of Zn deficiency levels/stages.
Further assessment of the relationship between usual dietary Zn
intake and FADS1/FADS2 diagnostic performance is needed. It
would be useful to measure the FADS1/FADS2 response after
controlled manipulations of dietary Zn intake, conducting Zn
depletion/repletion studies.

In addition, the initial activity of desaturases between individuals
who do or do not appear to have a functional response to
modification in their Zn intakes should be examined. It would also
be valuable to compare FADS1 and FADS2 gene expression between
individuals with clinical signs generally recognized as functional
outcomes of severe Zn deficiency and contrast the findings with
the results obtained in those with marginal Zn deficiency or Zn
sufficiency (at least no deficiency per se). Furthermore, identification
of factors that distinctively impact desaturases activity will expand

our understanding of the age, sex, and ethnic-specific characteristics
of fatty acid intake and metabolism and its relationship with
Zn intake/status.

Additional randomized controlled human dietary Zn
intervention trials are required to clarify alterations in desaturase
activities in the presence of infectious and inflammatory conditions.
Further research is needed to explain if dysregulation of desaturases
activities is a reason or a result of metabolic disturbances in unhealthy
population cohorts, and to what extent, commonly seen reduced Zn
levels contribute to it. Further primary or secondary data analysis
from controlled feeding studies are needed to clarify the impact of
other minerals on desaturases, specifically the effect of calcium, iron,
and copper deficiency and supplementation.

Likewise, the enzymatic activity of hepatic desaturases should
be distinguished from the expression and activity of desaturases
in non-hepatic tissues to define the exact role of dietary fats
in desaturases activity and FADS1 and FADS2 gene expression.
Inconsistent responses of delta 5 and delta 6 desaturases to Zn intake
should be clarified, particularly the identification of other factors
that may also change the kinetics of desaturase enzymes. Finally,
FADS1/FADS2 gene expression could be matched and examined in
relation to modifications of Zn-dependent proteins and genes at the
main sites of Zn absorption.

Further studies are needed to determine the threshold dose of
Zn (if such exists) that is needed to be taken with or without the
food to influence the activity of desaturases and FADS1/FADS2 gene
expression. The amount and form of Zn and the way it is given, in a
fasted state or with food, should be clearly defined in Zn intervention
trials before desaturase activity is to be determined.

Red blood cells membrane lipids seem to be the best choice for
measuring conversion pathways as red blood cell fatty acid structure
is unaffected by fasting status and is more stable over time, but
simultaneous comparison of methods in an experimental design is
needed to confirm this.

More research is needed to better describe the effectiveness
of desaturases as accurate and precise indicators of variations in
bioavailable Zn intake over time, i.e., high vs. low Zn intake and
over short vs. long provision times. Dietary fat content, particularly
intake of polyunsaturated fatty acids, should be assessed during Zn
intervention trials to exclude potential confounding effects intake
of fat may have on Zn-fatty acid relationships. Well-controlled
timing of food in relation to Zn intake may help clarify metabolic
effects/fatty acid alterations of dietary Zn intake and eliminate
the potentially confounding effect of dietary patterns on assessed
outcomes. Numerous dietary components can influence desaturase
and elongase activities and thus, careful consideration of all dietary
components is needed. Appropriate dietary data collection is of
crucial importance in this instance. Further investigation should
be pursued to elucidate current inconsistencies in terms of both,
the quantity of certain macronutrients and their composition.
The influence of other dietary components, i.e., polyphenols on
desaturases activity should be additionally explored.

The role of aging, sexual development stage in women, gender
in nutritionally at-risk life cycle stages, and ethnicity should
be, whenever possible, taken into consideration and additionally
examined with respect to relationships between desaturase activities
and Zn interventions. An appropriate randomization process and
strictly defined study entry criteria are necessary to eliminate both
recognized and unrecognized covariates and confounders. Additional
interventional and controlled feeding studies should investigate
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other possible interindividual factors that might affect the
FADS1 and FADS2 performance, and the replicability, validity,
sensitivity, specificity, ability to identify changes and suitability
of a Zn biomarker for a population under study should be
carefully assessed.

Finally, as a panel of biochemical markers of Zn is most likely
needed to accurately determine Zn status, further work should aim to
identify the most cost-effective combination of prospective indicators
that could be used in low to middle income countries for predicting
the Zn status of individuals and diverse populational groups, both
healthy and unhealthy cohorts.
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