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Background: Usutu virus (USUV) is an emerging mosquito-borne Flavivirus, with

birds as the main zoonotic reservoir. Humans are accidental hosts and mostly

develop mild or even asymptomatic infections, although severe complications

such as encephalitis can also arise. Detailed characterization of the pathogen’s

phylogenetics may o�er valuable insights into the prediction and prevention of

potential epidemics; however, lack of uniformity and the number of available USUV

sequences worldwide hamper comprehensive investigation.

Aim: The study aimed to investigate USUV spatio-temporal dispersal inter- and

intracontinentally and to estimate the dynamics of viral spread within Europe.

Methods: Phylogeographic and phylodynamic analyses were done using

advanced phylogenetic methods implemented in Beast 1.10.4 and Beast 2.6.4

software packages.

Results: Herein, we report on a new USUV isolate from Culex pipiens collected

in 2019 from Serbia. The results of this research revealed two newly described

intercontinental migration events of USUV from Africa to Germany in the 1970s

and from Africa to the Middle East (Israel) in the late 90s. Finally, phylodynamic

analysis substantiated the ongoing active expansion of USUV in Europe.

Conclusion: The data would imply a high potential for further USUV expansion

in Europe. Detailed phylogenetic characterization of the pathogen may o�er

valuable insights into prediction and prevention of potential epidemics; however,

lack of uniformity and number of available USUV sequences worldwide hampers

comprehensive investigation. This study draws attention to the need for upscaling

USUV surveillance.

KEYWORDS

Usutu virus, phylogeography, phylodynamics, evolutionary dynamic, mosquito vectors,

emerging disease

Introduction

Arboviruses are among the most important emerging human pathogens, with the

threat frommosquito-borne arboviruses extending to livestock and wildlife, with potentially

far-reaching consequences for human life and wellbeing (Johnson et al., 2018). Usutu virus

(USUV) is an emerging zoonotic agent that may further fuel the arboviral disease burden.

A member of the Flaviviridae family, USUV is an arbovirus that was first isolated in

South Africa in 1959 (Clé et al., 2019). Its single-stranded positive RNA genome contains a
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single open reading frame (ORF) coding for a polyprotein of

3,434 amino acids that yields three structural proteins (C—capsid,

prM—premembrane prM, and E—envelope), along with eight non-

structural proteins (NS1/NS1’, NS2a, NS2b, NS3, NS4a, 2K, NS4b,

and NS5) (Calisher and Gould, 2003).

Usutu virus is closely related to the more widely known West

Nile virus (WNV) and Japanese encephalitis virus (JEV) (Ashraf

et al., 2015). The life cycle of the USUV involves mosquitoes of

the genus Culex as main vectors and various species of birds as

amplifying hosts. The virus itself is harmful to birds and known to

cause mass extinction events among common blackbirds (Turdus

merula) and other species of wild birds across Africa and Europe

(Clé et al., 2019; Störk et al., 2021). Humans and other mammals

are considered incidental hosts, with a limited number of human

cases reported so far (Vilibic-Cavlek et al., 2020).

Usutu virus isolates were first phylogenetically classified into

seven distinct genetic lineages: three African (Africa 1–3) and four

European (Europe 1–Europe 4) (Calzolari et al., 2012; Vilibic-

Cavlek et al., 2020). In recent years, with an increasing number of

USUV sequences available in databases, one additional European

lineage (Europe 5), including sequences from Germany, has also

been proposed (Cadar et al., 2017a). Upon its discovery near the

Usutu River in Swaziland, South Africa, in 1959, USUVwas initially

considered endemic to Africa. The first USUV emergence on

European soil was noted in 1996 in Italy, based on the retrospective

analysis of archived tissue samples originating from a bird die-off

(Cadar et al., 2017a).

A massive outbreak in 2001 among common blackbirds in

Vienna, Austria, prompted more vigilant surveillance of this new

emerging arbovirus. In the following years, USUV has been

detected by PCR in mosquitoes in numerous European countries

(Germany, Italy, Czech Republic, Croatia, Serbia, Spain, Belgium,

and France) as well as serologically in birds throughout Europe

(Jöst et al., 2011; Calzolari et al., 2012, 2017; Klobucar et al., 2016;

Cadar et al., 2017a; Camp et al., 2019; Clé et al., 2019; Hönig et al.,

2019; Vilibic-Cavlek et al., 2020). Since different mammal species

serve as incidental hosts of USUV, antibodies have sporadically

been detected in horses (Barbic et al., 2013; Csank et al., 2018),

dogs (Montagnaro et al., 2019), squirrels (Romeo et al., 2018), wild

boar, roe deer (Bournez et al., 2019), and lizards (Csank et al., 2019).

Furthermore, USUV RNA has also been found in bats (Pipistrellus

pipistrellus) in Germany and Belgium (Cadar et al., 2014; Benzarti

et al., 2020).

The first two cases of human infection in Africa were described

in 1981 and 2004, with both patients presenting with mild

symptoms including fever, jaundice, and rash (Nikolay et al.,

2011). Cases of more severe disease were described in Italy in

2009 when immunosuppressed patients presented with USUV-

associated meningoencephalitis (Cavrini et al., 2009; Pecorari et al.,

2009). Subsequently, the only USUV neuroinvasive infection in

humans outside Italy was described in Croatia in 2013 during

a WNV outbreak (Santini et al., 2015). In 2018, USUV spread

rapidly in Western Europe, concomitant to a large WNV outbreak

that reached 1,503 human WNV cases, including 181 deaths in a

dozen European countries (Clé et al., 2019). In recent years, over

40 symptomatic patients have been reported, as well as several

asymptomatic infections fortuitously discovered mostly through

routine screening forWNV (Cadar et al., 2017b; Carletti et al., 2018;

Cadar and Simonin, 2022).

To date, studies tracing the epidemic origin, USUV inter- and

intra-continental migration patterns, and phylodynamics are very

scarce.With this study, we aimed to explore USUV spatio-temporal

dispersal outside of Africa, and further estimate the dynamics of

viral spread within Europe.

Materials and methods

Phylogenetic investigation

The present study included USUV NS5 gene sequences,

available in the GenBank NCBI database (accessed March 2022),

with known location and collection date (Supplementary Table S1).

The dataset included one newly generated sequence from Serbia,

obtained from a Culex pipiens mosquito pool collected in 2019

(more detailed data on the methodology and location are provided

in the Supplementary material). Sequence alignment was done

by MAFFT 7 software (https://mafft.cbrc.jp/alignment/server/)

and manually inspected. The best-fitting nucleotide substitution

model for the final sequence data set was GTR+G+I, as selected

by Akaike’s information criterion (AICc) using jModelTest 3.06

(Shapiro et al., 2006; Posada, 2008). Detection of possible

recombination was performed using various models implemented

in the Recombination Detection Program v4 (RDP4) (Martin

et al., 2015). The sequences suggested to be recombinant by at

least three methods were removed. The phylogenetic signal was

assessed using likelihood-mapping, which generates maximum-

likelihood (ML) trees for all possible quartets of sequences and

counts the frequency of trees with varying quality (Strimmer and

von Haeseler, 1997). Likelihood-mapping analysis was conducted

using the appropriate sets of parameters, including the best-fitting

model and 10,000 randomly selected quartets (groups of four

randomly chosen sequences). In order to determine the extent to

which the data included the temporal structure and to estimate the

rate and time scale of USUV evolution, we employed the TempEst

program (Rambaut et al., 2016). The input data for this program is a

phylogenetic tree that was previously created using the maximum-

likelihood (ML) approach using MEGA X software (Kumar et al.,

2018). The obtained data were visualized as a distribution chart of

root-to-tip distances (a regression against sampling date for dated

tips). In order to investigate mutations related to intra- and inter-

continental migration events, we analyzed the alignment of amino

acid sequences manually and further by employing visual signature

pattern analysis software (VisSPA) V 1.6 (https://sray.med.som.

jhmi.edu/SCRoftware/VisSPA/).

Phylogeographic analysis

To describe the geographic dispersal of USUV, phylogeographic

analysis was done in the BEAST 1.10.4 software package (https://

beast.community/) using the continuous-time Markov Chain

(CTMC) process over discrete sampling locations, together with the

Bayesian stochastic search variable (BSSV) algorithm (Lemey et al.,

2009; Suchard et al., 2018). The uncorrelated lognormal relaxed

clock model (UCLN) was chosen as the best fitting, according

to the number of previously reported studies, which focused on

the in-depth phylogenetic analysis of USUV and West Nile virus
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(Engel et al., 2016; Fall et al., 2017; Tomazatos et al., 2019;

Zecchin et al., 2021). We employed a GMRF Bayesian Skyride

as a non-parametric coalescent model, in order to take a flexible

approach to demographic modeling; this model is used to capture

complex population dynamics and MCMC chains were run for

5 × 107 generations for each data set, with a burn-in of 10%.

The convergence of parameters was assessed through the ESS>200

after excluding an initial 10% for each run, checked using Tracer

v1.6 (Rambaut et al., 2012). The location annotated maximal

clade credibility (MCC) tree was visualized using FigTree software

v 1.4.4 and analyzed further in the SPREAD3 program. Routes

with a posterior probability of >0.6 were considered significant

(Rambaut, 2009; Bielejec et al., 2016).

Phylodynamic investigation (e�ective
reproductive number estimation)

Investigation of the phylodynamics of USUV dispersal in

Europe was performed for all distinctly defined phylogenetic

clades spreading in Europe consisting of nine or more sequences.

Phylodynamic analyses were performed in the BEAST2 v 2.6.5

software package (http://www.beast2.org/) using literature-

informed sets of parameters (Stadler et al., 2013; Bouckaert et al.,

2014, 2019; Veo et al., 2019). Briefly, the Birth-Death Skyline

Serial model (BDSKY) was selected as mosquitoes were sampled

sequentially through time and the value of Re was set as a log-

normal prior, with a mean value (M) of 0.0 and a variance (S) of

1.25, with the number of dimensions set to 4, 5 or 10 dimensions,

as best suited for the particular clade. The rate of becoming

uninfectious was set as a normal prior with M = 27 and S = 5

(95% confidence interval 18.8–35.2, corresponding to an infectious

period of between 10.4 and 19.4 days), as reported previously

(Veo et al., 2019) A prior beta (1.0, 9999) was used to estimate

the sampling probability, which corresponded to a minority of

cases sampled. The epidemic origin was estimated using a log

normal prior with M = 3.0 and S = 0.2. To visualize Re trends, the

log output files of BEAST 2 were plotted using the “bdskytools”

package in the R studio, available on GitHub. (https://github.com/

cran).

Results

Phylogenetic analysis

The final alignment for the present study encompassed 493

sequences of the USUV partialNS5 gene (864 nt in length) collected

between 1959 and 2020 from 19 countries across Europe, Africa,

and Asia (Supplementary Table S1). All sequences were confirmed

as non-recombinant by various methods for recombination

detection implemented in RDP4. The assessment of phylogenetic

noise of the studied USUV NS5 region, through investigation of

10,000 randomly chosen quartets by means of likelihood mapping,

showed that only 16.3% fell in the central area of the likelihood

map. The remaining 83.7% were at the corners of the triangle

which implies sufficient phylogenetic information (Figure 1).

Root-to-tip regression analysis, with an obtained correlation

coefficient of 0.37, indicated the sufficient temporal structure of the

examined data set, appropriate for in-depth phylogenetic analyses

(Supplementary Figure S2).

First, analysis was performed with the aim to compare both

isolates from Serbia to the reference sequence by means of

BLAST analyses and computation of pairwise distance in MEGA

software. Thus far, there is a single reported reference sequence

of USUV, isolated from birds, in Austria, with the accession

number NC00651. Both the BLAST tool and MEGA software

revealed congruent results, revealing the genetic identity of 97.95%

and 99.5% of newly detected and previously reported sequences,

respectively, compared to the reference sequence. Observed

similarity-based amino acid sequences revealed 1.8% and 0.3% of

newly detected and previously reported sequences, respectively,

compared to the reference sequence.

Phylogeographic analysis

Herein, a discrete trait phylogeographic analysis was used in

order to analyze the viral migration routes and to explore the origin

of the USUV outbreaks, with a special focus on viral spread outside

Africa. The topology of the obtained MCC tree was in line with

the seven previously described phylogenetic lineages: three African

(Africa 1–3) and four European (Europe 1–Europe 4) (Figure 2). In

addition, we characterized one putative new lineage—the Middle

East—consisting of sequences from Israel, Senegal, and Uganda.

The obtained phylogeographic estimates imply that USUV first

originated in South Africa at the beginning of the 20th century, and

initially spread in Africa (Senegal and Central African Republic).

A single highly divergent isolate from the Central African

Republic (GenBank accession no. KC754958) thus forms a lineage

Africa 1 (Figure 2; Supplementary Figure S3). Subsequently, several

intercontinental viral migration events occurred, starting from the

mid-20th century [results supported by high posterior probability

(pp >0.6)]. Of the estimated five independent intercontinental

migration events, four are from Africa to Europe and one from

Africa to the Middle East. In detail, two initial intercontinental

migration events from Africa (Senegal) to Western Europe (Spain)

occurred in the mid-1950’s. Upon second entry to Spain around

1956 (95% high-probability density [HPD] from 1930 to 1966),

USUV continued to spread intra-continentally to Germany almost

50 years later and further on to France (lineage Africa 2)

(Figure 2).

Furthermore, two ensuing migration events in Europe

have been estimated: in 1971 in Germany (corresponding to

previously designated lineage Africa 3) (95% high-probability

density [HPD] for 1958 to 1978) and in 1981 in Austria

(95% high-probability density [HPD] for 1969 to 1991). The

former clade, representing a newly described entry from Africa

(Senegal) to Germany, predominantly contains isolates from

the Netherlands and Germany, with sequences from Belgium,

France, Luxembourg, Great Britain, and the Czech Republic

also taking part. Regarding the latter clade, upon its ingress

to Austria, USUV continued to spread throughout West and

Central-Eastern Europe via several intra-continental migration

events between Italy, Hungary, the Czech Republic, Croatia,
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FIGURE 1

Assessment of the phylogenetic noise of the dataset through the likelihood mapping method implemented in the program TreePuzzle, suggesting

su�cient phylogenetic information within the alignment.

Serbia, Germany, Austria, Belgium, France, Sweden, and the

Netherlands, thus forming a large monophyletic clade (Figure 2)

that gave rise to four separate subclades (Europe 1–Europe

4), all except Europe 1 supported by pp > 0.6. The subclade

Europe 1 encompasses sequences from Hungary and the Czech

Republic. Subclade Europe 2 is the largest one (177 sequences),

predominantly of isolates from Italy, which spread from Austria

in 2003 (95% high-probability density [HPD] from 1997 to

2004). This subclade contains a distinct heterogeneous Central

European cluster consisting of strains from Italy, Hungary, Serbia,

Croatia, the Czech Republic, and Germany. Another large subclade,

Europe 3 (138 sequences) formed by USUV spread from Italy

to Germany in 2005 (95% high-probability density [HPD] from

2005 to 2009), with the majority of sequences from Germany,

but also from Belgium, France, Czech Republic, and Sweden.

The fourth subclade, Europe 4, is a small cluster of nine

Italian sequences.

Finally, our phylogeographic analysis, for the first time,

revealed an intercontinental migration of USUV from Senegal

to the Middle East (Israel), estimated to have happened in 1997

(95% high-probability density [HPD] from 1995 to 2003). This

clade would represent a new putative phylogenetic lineage in the

Middle East.

Investigated alignment of the NS5 genetic region

(encompassing from 505 to 792 amino acid position) did not

reveal any geographically related point mutation.

Phylodynamic investigation

Usutu virus phylodynamics in Europe were assessed

by calculating the effective reproductive number (Re)

over time on the four total phylogenetic clades: the clade

Europe 2, containing predominantly Italian sequences

(encompassing 177 sequences in total); its intermixing

subclade of 16 sequences from Central-Eastern Europe,

including the newly generated one from Serbia; the

clade Europe 3, predominantly made of sequences from

Germany (encompassing 138 sequences); and the clade

Africa 3 (stemming from the newly described entry event

to Europe via Germany), that mostly contained sequences

from the Netherlands (encompassing 100 sequences)

(Figures 3A–D).

Re of the clade containing all Italian sequences reached a

maximum value in 2009, followed by a decreasing phase and a

subsequent rise around 2016 (Figure 3A). Re of the Netherlands

cluster reached a maximum in 2015 (Figure 3B). The German

sequence started to spread in 2005 and 2 years later reached the

maximum (2007). Soon after, it decreased and became inactive until

2015 (Figure 3C). The Central-Eastern Europe dataset started to

be active in 2012 and reached its maximum in 2015 (Figure 3D).

For all investigated clades, the Re value remained above one until

the present time. In particular, for the clades Africa 3 and Central

European subclade within the clade Europe 2, Re showed a sharp
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FIGURE 2

Phylogeographic analysis of 493 partial NS5 USUV sequences performed in BEAST 1.10.4 software. Maximum clade credibility (MCC) tree was

visualized in FigTree 1.4.4. The branches are colored based on the most probable location of the descendent nodes. The numbers on the internal

nodes indicate significant posterior probabilities (pp > 0.5), and the scale at the bottom of the tree represents calendar years. All clades with a

number of sequences higher than 5 were comprised. Abbreviations: AUT (Austria), BEL (Belgium), CAF (Central African Republic), CRO (Croatia), CZE

(Czech Republic), ESP (Spain), FRA (France), GBR (Great Britain), GER (Germany), HUN (Hungary), ISR (Israel), ITA (Italy), LUX (Luxembourg), NLD (The

Netherlands), SEN (Senegal), SER (Serbia), SWE (Sweden), UGA (Uganda), ZAF (South Africa).

increase reaching a value of ∼2, suggesting the high potential for

further expansion.

Discussion

The present study explores USUV worldwide dispersal patterns

and transmission dynamics, with a particular focus on viral spread

within Europe, by employing phylogeographic and phylodynamic

analysis. With 493 partial USUV NS5 sequences included, from

19 countries and three continents, this study is the most

comprehensive USUV phylogenetic study to date on the number

of isolates and their geographic width. This study is, to the

best of our knowledge, only the second to explore USUV

phylogeographic spread between continents, and the first to present

USUV phylodynamics in Europe, by employing the Bayesian

phylogenetic approach. The NS5 gene was chosen as the one

with the greatest nucleotide and amino acids variation among all

commonly analyzed USUV genes (Engel et al., 2016). Of note,

phylogenetic studies based on the NS5 gene sequences have been

shown to correlate well with the existing USUV whole genome data

(Engel et al., 2016; Zecchin et al., 2021).

The expanded scope and range of arboviral infections lie

among the issues that arise from climate change, impinging on

many facets of life, and human health and wellbeing are no

exception (Grubaugh and Ebel, 2016; Grubaugh et al., 2017).

Extended local and global dispersion of arboviruses is a driver of

pathogen evolution, as viruses adapt to local ecological conditions

(Júnior and Mendonça, 2021). This may result in higher human

morbidity and mortality. Comprehensive phylogenetic research,

such as our study, coupled with vector surveillance may reinforce

disease prevention.

Several studies to date have explored USUV genetic diversity

(Auguste et al., 2010; Cadar et al., 2015; Engel et al., 2016; Ziegler

et al., 2016; Zecchin et al., 2021). Nonetheless, the phylogenetic
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FIGURE 3

Birth–death skyline plot based on the (A) Italian dataset together with the subclade of Central European sequences, (B) Central European dataset, (C)

Europa 3, and (D) Africa 3. The BDSKY model was used and implemented in BEAST2 v2.6.5. The red line delineates the cut-o� value of Re=1. The

shaded area represents 95% confidence intervals of Re estimates over time. The x-axis represents time in years and the y-axis the Re value.

classification of USUV has not been completely elucidated yet,

with a different number of described lineages, in relation to the

size of the studied dataset (in sequence number and length).

We explored USUV phylogeographic migration patterns, and the

results obtained are mostly in line with previous studies that

classified USUV into seven phylogenetic lineages, corresponding

to independent migration paths in our analysis. Of note, a novel

migration event from Senegal to Israel and a phylogenetic clade

including isolates from this country have been described in our

study, and tentatively classified as Middle East lineage. Overall,

we observed eight distinct phylogeographic lineages: three African,

four European, and one new Middle East clade. These lineages

stem from five intercontinental migration events out of Africa: four

toward Europe and one toward the Middle East.

The obtained results imply that the initial USUV spread at

the beginning of the 20th century was fairly local throughout

Africa (South Africa, Senegal, and Central African Republic);

however, the existing sequence data do not allow for reliable

and accurate reconstruction of the initial USUV African intra-

continental dispersal. The initial point of entry to Europe has

been estimated to be Spain in the mid-1950’s, on at least

two separate occasions, both originating from Senegal and

forming the genetic lineage Africa 2. Similar findings have

been described by Engel et al., however, on a smaller dataset

including full genome sequences and partial E and NS5 gene

sequences (Engel et al., 2016). Even though the virus entered

Spain in the mid-1950’s, it remained restrained locally, with

the further intracontinental spread of this lineage in Europe

starting at the beginning of the 2000’s. A similar pattern of

delayed dispersal until the early 2000’s is also evident for both

the clade Africa 3, formed by the third introduction of USUV

from Africa to Europe (Germany), estimated to have occurred in

1971, and the fourth clade, estimated to have occurred in 1981,

in Austria.

USUV introduction to Austria further on led to dispersal

throughout West and Central – Eastern Europe via a number

of intra-continental migration events and thus forming one large

monophyletic clade as also shown by Engel et al. (2016). However,

the direction of viral spread can be considered as controversial.

Several previous studies together with the results obtained in our

study suggested the direction of USUV dispersal occurred from

Austria to Italy and further on throughout West and Central –
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Eastern Europe (Engel et al., 2016; Calzolari et al., 2017; Roesch

et al., 2019). In the contrast to these findings, Zecchin et al. (2021)

proposed that USUV spread from Italy to Austria in two different

occasions. The first introduction occurred in the mid nineties,

while the second was in 2012. Nevertheless, this result may be the

consequence due to a bias of a large number of Italian sequences

included in the study. All aforementioned studies have certainly

suggested that Italy acted mainly as donor of USUV to neighboring

countries, indicating the central role of this country to USUV

spread throughout Europe (Zecchin et al., 2021).

The fifth intercontinental route of USUV spread, described for

the first time in this study, represented the entry of the virus from

Africa to Israel, estimated to have occurred in 1997. Israeli strains

share the most recent common ancestor with Senegalese strains. In

view of targeted prevention and response to potential outbreaks,

further dispersal of this lineage should be carefully monitored,

especially considering recent results on the seroprevalence of

WNV and USUV detected in horses in Israel. Seroprevalence for

neutralizing antibodies against WNV and USUV was 84.1% and

10.8%, respectively, in 2018 (Mannasse et al., 2017; Schvartz et al.,

2020).

The results of our phylogeographic analysis suggested that the

evolution of USUV has been shaped by long-distance migration

routes between continents. Migratory birds are known as viral hosts

and reservoirs, hence viral dispersion, including arboviruses such

as WNV and USUV, has been associated with migratory birds’

flyways (Zhang et al., 2014; Mancuso et al., 2022). Eight major

migratory birds’ flyways have been established: Pacific Americas,

Mississippi Americas, Atlantic Americas, East Atlantic, Black Sea-

Mediterranean, West Asia-East Africa, Central Asia, and East

Asia/Australasia (CMS Technical Series No. 27, 2014). A link has

already been proposed between USUV dispersal from Senegal to

Spain and a large East Atlantic intercontinental migratory bird

flyway, which encompasses practically the whole of Spain (Engel

et al., 2016). The Black Sea-Mediterranean flyway, linking Africa

to Central-Eastern Europe could, therefore, be proposed as the

main route for the spread of USUV from Africa to Austria and

Italy. Considering that these two migration routes overlap on the

territory of Western Europe, USUV’s introduction to Germany and

further into the Netherlands might be explained by either of the

two. Similarly, the spread of USUV from Africa to Israel might

be connected to bird migration via the Black Sea-Mediterranean

or West Asia/East Africa migration routes, which have been

established for many bird species that breed in the mid-Palaearctic

and choose to embark on a much longer south-westerly migration

to Africa (Zhang et al., 2014).

In addition to migratory birds’ pathways as one of the most

important mechanisms for the spread of arboviruses, other ways of

USUV dispersion should be taken into consideration. For example,

the presence of invasive and exotic mosquito species capable of

USUV transmission at large international airports presents a new

variable in USUV dissemination routes (Ibáñez-Justicia et al.,

2020). Furthermore, regions suitable for Cx. pipiens survival, a

phenomenon strongly connected to climate change, present the

risk of USUV introduction into formerly inaccessible biomes,

representing potential epidemiological hotspots (Hongoh et al.,

2012).

Previously, Engel et al. postulated that themajority of European

USUV strains resulted from a single introduction; however, we

have identified two major migration events that led to wider

USUV dispersal in Europe: to Germany in 1971 (clades Africa 3)

and to Austria in 1981 (a clade further spread through lineages

Europe 1–4). The simultaneous presence of USUV lineages Europe

3 and Africa 3 has been noted in Germany and the Netherlands

predominantly from blackbirds, raising the issue of enzootic viral

co-circulation (Oude Munnink et al., 2020).

In general, in spite of the identified prior introduction events,

the substantial spread of different USUV lineages within Europe

only started in the early 2000’s, with a “lag” period of several

decades. If these findings indeed reflect delayed dispersal upon a

period of silent, low-scale USUV circulation, this still remains to be

elucidated along with the specific circumstances that triggered the

spread. To investigate the temporal trend of the USUV epidemic

in Europe, we analyzed the phylodynamics of the four largest

clades spreading on the continent (clades Europe 2 with its

Central European subclade, Europe 3, and Africa 3) predominantly

including sequences from Italy (encompassing one Central-Eastern

European clade), Germany, and the Netherlands, using a birth-

death skyline model. Estimation of the Re value may indicate

whether the numbers of pathogen carriers or infected units (IUs)

will increase or decrease, with values of Re above 1 suggesting an

expansion of the infected population (Achaiah and Subbarajasetty,

2020). For all the analyzed USUV clades, an increase in activity

was noted after the 2000’s, indicating that USUV intensively spread

throughout Europe rather recently. Most zoonotic pathogens are

not highly transmissible within human populations and cannot

cause major epidemics (Woolhouse and Gowtage-Sequeria, 2005).

Consequently, for pathogens that are minimally transmissible

within human populations, outbreak size is determined largely

by the number of introductions from the reservoir. The Italian

epidemic caused byWNV, also a member of the Flaviviridae family,

was analyzed in the same manner using in-depth phylogenetic

analysis. As a result, parallel trends in epidemic growth for the

period from 2011–2018 in Italy have been seen for both USUV and

WNV (Veo et al., 2019; Zecchin et al., 2021). The fact that both

viruses formed endemic clades strengthens the hypothesis of local

over-wintering in Italy more than that of the annual reintroduction

of the same viral strain (Veo et al., 2019).

To a certain extent, a limiting factor to our study may be

the lack of USUV WGS analysis. Nevertheless, there is evidence

of WGS and sole-NS5 analyses yielding very congruent results

regarding topologies and introduction events inferred bymaximum

likelihood (ML) and Bayesian maximum clade credibility (MCC)

phylogenies. An example is present in the study of Engel et al.

(2016), where WGS and NS5 Sanger sequencing yielded similar

results. Furthermore, we used the largest number of NS5 sequences

for the phylogenetic analysis so far (493, as opposed to 406

sequences available in the NCBI database), hopefully giving a clear

and informative representation of the phylogenetic properties of

USUV’s temporal and geographical spread. Finally, the NS5 gene

was chosen for its greatest nucleotide and amino acid variation

among all commonly analyzed USUV genes (Engel et al., 2016).

Finally, we would be remiss not to mention as a possible drawback

a discrepancy in the accuracy of the estimated global times to the
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most recent common ancestor (TMRCA) for theNS5 and complete

genome data sets. However, the estimated TMRCAs for each lineage

(except Africa 1) were very similar in theNS5 and complete genome

MCC trees. The same results were obtained herein. In addition,

the existence of eight different USUV lineages has been proposed

by Cadar et al. (2017a). In their study, the authors analyzed

USUV sequences of different lengths. Therein, those of the newly

identified lineage Europe 5 (KY113091, KY113097, and KY113101–

KY1130104) were 265 nt in length, none of which overlapped

with our alignment. Therefore, it was not possible to include these

sequences in the present study; another reason for not including

the sequences from Germany is the lack of WGS analysis of the

available USUV genomes in our research. Admittedly, this may also

present a potential limitation of our investigation.

The present study represents the most comprehensive in-depth

phylogenetic analysis of USUV, based on 493 isolates originating

from three continents. By using the most comprehensive USUV

sequence dataset so far, we have identified two new virus

introduction events in Europe and the Middle East. Estimated

Re values for the dominant clades spreading in Europe imply

the high potential for further expansion. Detailed phylogenetic

characterization may offer valuable insights into the prediction and

prevention of potential epidemics; however, the lack of uniformity

and the number of available USUV sequences worldwide hamper

comprehensive investigation.
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