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Abstract

It has been shown that angiogenesis and inflammation play an important role in development of 

most hematological malignancies including the myeloproliferative neoplasm (MPN). The aim of 

this study was to investigate and correlate the levels of key angiogenic molecules such as hypoxia-

inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and endothelial nitric 

oxide synthase (eNOS) in peripheral blood and bone marrow cells of MPN patients, along with 

JAK2V617F mutation allele burden and effects of therapy. HIF-1α and VEGF gene expression 

were decreased, while eNOS mRNA levels were increased in granulocytes of MPN patients. 

Furthermore, positively correlated and increased VEGF and eNOS protein levels were in negative 

correlation with HIF-α levels in granulocytes of MPN patients. According to immunoblotting, the 

generally augmented angiogenic factors demonstrated JAK2V617F allele burden dependence only 

in granulocytes of PMF. The angiogenic factors were largely reduced after hydroxyurea therapy in 

granulocytes of MPN patients. Levels of eNOS protein expression were stimulated by Calreticulin 

mutations in granulocytes of essential thrombocythemia. Immunocytochemical analyses of CD34+ 

cells showed a more pronounced enhancement of angiogenic factors than in granulocytes. 

Increased gene expression linked to the proinflammatory TGFβ and MAPK signaling pathways 

were detected in CD34+ cells of MPN patients. In conclusion, the angiogenesis is increased in 

several cell types of MPN patients supported by the transcriptional activation of inflammation-

related target genes, and is not limited to bone marrow stroma cells. It also appears that some of 

the benefit of hydroxyurea therapy of the MPN is mediated by effects on angiogenic factors.
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INTRODUCTION

Angiogenesis is a process of generation of new capillaries, and increased levels of 

angiogenic factors reflect the aggressiveness of tumor cells [1]. Many inducers of 

angiogenesis have been identified but one of the best characterized is vascular endothelial 

growth factor (VEGF) [2]. One of the most potent stimuli for increased VEGF production by 

tumor cells, in vitro and in vivo, is hypoxia via the hypoxia-inducible factor-1 alpha 

(HIF-1α) [3]. Recent studies have correlated HIF-1α with VEGF gene expression in cancers 

and myeloma cells [4,5]. The role of nitric oxide (NO) in angiogenesis is controversial since 

several studies have revealed that NO may induce VEGF production via the 

phosphoinositide-3-kinase (PI3K)/AKT/HIF-1α pathway [6], while others reported that NO 

might act as an inhibitor of HIF-1α [7]. These contradictory data indicate that NO effects 

may depend on the redox state of the cellular environment and cell type specific response 

[8]. Low concentrations of NO produced in response to VEGF stimulated angiogenesis, 

while higher concentrations associated with inflammation can inhibit angiogenesis [9].

Myeloproliferative neoplasms (MPNs) include three major entities: polycythemia vera (PV), 

essential thrombocythemia (ET), and primary myelofibrosis (PMF). They are clonal 

disorders arising in a pluripotent hematopoietic stem cell, causing an unregulated increase of 

terminally differentiated blood cells, with an increased risk of thrombosis and late 

transformation to acute myeloid leukemia [10]. Common feature of these diseases is 

acquired somatic mutation V617F in the JAK2 gene, present in 97% of patients with PV and 

half of the patients with ET and PMF [11]. Increased microvessel density and VEGF 

expression associated with MPNs was further enhanced with high JAK2V617F mutant allele 

burden [12]. Nevertheless, the levels of VEGF in ET patients on hydroxyurea therapy were 

significantly lower than in untreated ET patients [13].

The human cell surface molecule CD34 is expressed on hematopoietic and vascular 

endothelial progenitor cells, while capillaries of most tissues are CD34+ [14]. These bone 

marrow derived CD34+ cells are found circulating in peripheral blood and their efficacy in 

proangiogenic therapies has been studied [15]. In contrast to the typical cobblestone 

morphology of endothelial cells, CD3+ endothelial cells are more elongated and lack tight 

junctions. These CD34+ endothelial cells have the prominent impact during in vivo 

angiogenesis [16].

In hematological malignancies, bone marrow and lymphatic organs harbor the malignant 

clone that gives rise to disease, followed with imbalance of the cells, cytokines and growth 

factors maintaining physiological angiogenesis [17]. During the last decade, angiogenesis 

was shown to play an important role in the development of most hematological malignancies 

[18]. The aim of the present study was to investigate and correlate the levels of key 

angiogenic molecules HIF-1α, VEGF, and endothelial NO synthase (eNOS) in bone 
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marrow, CD34+ cells and granulocytes of MPNs, according to JAK2V617F and Calreticulin 

(CALR) mutation status and therapy.

MATERIALS AND METHODS

Patients and Controls

This study includes 160 patients and 15 healthy controls. Patients were diagnosed with MPN 

according to the World Health Organization classification. All patients had signed the 

consent form approved by the institutional review board. The median age of patients, 

comprising 70 males and 90 females, was 48.5 yr (range: 27–90 yr) at the time of diagnosis, 

while the median age of healthy donors, comprising 10 males and 5 females, was 49 years 

(range: 30–70 yr). From 160 patients included in our study, 72 were classified as PV, 47 as 

ET, and 41 as PMF. Of 72 PV patients, 28 were homozygotes while 44 heterozygous for 

JAK2V617F mutation. From 47 ET patients, 22 were without JAK2 mutation and 25 

heterozygous. Finally, from 41 PMF patients, 16 were without JAK2 mutation, 8 

homozygotes, and 17 heterozygous.

Isolation of CD34+ Cells and Granulocytes From the Peripheral Blood of MPN Patients

All de novo patients were subject to 30 ml of peripheral blood draw on one occasion, 

collected in disodium ethylenediaminetetraacetic acid (EDTA). The CD34+ cells were 

isolated from the collected mononuclear cells using a magnetic separation column (Super 

Macs II, Miltenyi Biotec, Bergisch Gladbach, Germany) and a mixture of magnetic 

microbeads conjugated with antibody against CD34 (Miltenyi Biotec) according to the 

manufacturer’s instructions. The pellet formed during centrifugation with lymphocyte 

separation medium (LSM, PAA Laboratories GmbH, Pasching, Austria), is comprised 

mostly of erythrocytes and granulocytes. Erythrocytes were removed by using lysing 

solution (0.15 M NH4Cl, 0.1 mM Na2EDTA, 12 mM NaHCO3). The viable CD34+ cell and 

granulocyte were counted by a trypan-blue exclusion technique (Life Technologies, 

Bleiswijk, Netherlands).

DNA Sequencing

Genomic DNA was extracted from peripheral blood granulocytes of MPN patients by using 

the proteinase K and phenol-chloroform technique. Single nucleotide mutation JAK2V617F 

was characterized by DNA sequencing after PCR amplification. PCR amplification was 

performed with wild-type JAK2-specific forward primer 5’-

TGGCAGAGAGAATTTTCTGAACT-3’ and reverse primer 5’-

TTCATTGCTTTCCTTTTTCACA-3’, confirmed by electrophoresis on an ethidium 

bromide-impregnated 1% agarose gel. PCR amplified samples are analyzed by sequencing 

on an automated ABI PRISM 3130 Genetic Analyzer (Applied Biosystems Inc, Foster City, 

CA) with AB DNA Sequencing Analysis Software (v 5.2) by using the Big Dye Terminator 

v3.1 Ready Reaction Cycle Sequencing Kit.

The mutation analysis of CALR exon 9, −52bp deletion (type1) and +5bp insertion (type2), 

was performed by allele specific PCR as previously reported [19]. The primer sequences are 

5’−3’sequence CALR-intr8-fam-fwd FAM-GGCAAGGCCCTGAGGTGT and CALR-ex9-
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rev GGCCTCAGTCCAGCCCTG. The PCR products were analyzed by fragment analysis 

with ABI3130xl Genetic Analyzer (Applied Biosystems Inc).

Isolation of Total RNA and RT-PCR

Total RNA from CD34+ cells and granulocytes was isolated using TRIzol (Life 

Technologies). Concentration and integrity of total RNA was assessed using Ultrospec 3300 

spectrophotometer (Amersham Pharmacia, Upsala, Sweeden). Equal amounts of RNA from 

different samples were transcribed into cDNA using the Maxima First Strand cDNA 

Synthesis kit (Thermo Fisher Scientific, Waltham, MA).

Real-Time Quantitative PCR

Quantitative real-time PCR analyses of human VEGF gene was performed using a 

LightCycler 480 (Roche Diagnostics, Roche Applied Science, Mannheim, Germany) and 

Taqman oligonucleotide probe 5’ CCA AGT GGT CCC AGG CTG CAC C 3’ and forward 

5’ TTG CTG CTC TAC CTC CAC CAT 3’ and reverse 5’ CAC TTC GTG ATG ATT CTG 

CCC 3’ primers. The oligonucleotide probes were fluorescently labeled on the 5’ end with 

FAM (6-carboxy fluorescein) and on the 3’ end with BlackBerry Quencher (BBQ). 

Quantitative real-time PCR analyses of human HIF-1α gene was performed using 

oligonucleotide probe 5’ AGC AAC AGG GAA AGC GTG GCT 3’ and forward 5’ GGC 

AGG AAG ATT GTC ATG GAC 3’ and reverse 5’ TCT GTC TGT CAC ATG GGT GAT 

GAA 3’ primers (TIB MOLBIOL GmbH, Berlin, Germany). Real-time quantitative PCR of 

eNOS gene was performed on a Mastercycler EP RealPlex (Eppendorf AG, Hamburg, 

Germany) using the Maxima SYBR Green/ROX qPCR master mix (Thermo Scientific, 

Cambridge, UK) and forward: 5’ CGG CAT CAC CAG GAA GAA GA 3’ and reverse 5’ 

GCC ATC ACC GTG CCC AT 3’ primers. β-actin was used as an internal control for 

normalization of the examined angiogenic factors. Real-time PCR was performed in 

granulocytes of total 83 MPN patients, but because of overlapping (samples from the same 

patient): HIF-1α was evaluated in 50 samples (20 PV, 15 ET, 15 PMF, plus 6 controls), 

VEGF in 52 samples (20 PV, 16 ET, 16 PMF, plus 6 controls) and eNOS in 58 samples (20 

PV, 23 ET, 15 PMF, plus 6 controls). Real-time PCR was performed in CD34+ cells of total 

57 MPN patients, but because of overlapping: HIF-1α was evaluated in 36 samples (16 PV, 

11 ET, 9 PMF, plus 5 controls), VEGF in 44 samples (22 PV, 11 ET, 11 PMF, plus 5 

controls), and eNOS in 39 samples (15 PV, 15 ET, 9 PMF, plus 5 controls).

Western Blot

Granulocytes were lysed in chilled radioimmuno precipitation assay (RIPA) lysis buffer (50 

mM Tris-HCl pH 7.6, 150 mM sodium chloride, 1% Triton x-100, 1% sodium deoxycholate, 

0.1% sodium dodecyl sulphate, 2 mM EDTA and 50 mM sodium fluoride) at a ratio of 1 ml 

of buffer on 1 × 108 cells. A protease inhibitor cocktail (Pierce, Thermo Fisher Scientific, 

Waltham, MA) and sodium orthovanadate were added to the lysis buffer just prior to use. 

Lysates were incubated at 4°C for 25 m and then centrifuged at 10 000g, 4°C, for 15 min. 

Protein concentration was determined by the bicinchoninic acid (BCA) Protein Assay Kit 

(Pierce, Thermo Fisher Scientific, Waltham, MA) and samples were stored at −70°C. In 

order to examine activated HIF-1α protein, we conducted separation of the nuclear and 

cytoplasmic fractions of granulocytes using NE-PER Kit (Pierce, Thermo Fisher Scientific). 
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For Western blotting, equal amounts of protein samples were run on polyacrylamide gels 

and transferred to polyvinylidene difluoride membrane. The membrane was blocked with 

5% bovine serum albumin (BSA, Applichem, GmbH, Darmstadt, Germany) for 1 h at room 

temperature (RT) and probed with primary antibodies to HIF-1α (R&D Systems, Abingdon, 

UK), α-tubulin (Sigma–Aldrich, Dorset, UK), VEGF, eNOS, and H2B (Santa Cruz 

Biotechnologies, Dallas, TX). Peroxidase conjugated goat anti-rabbit imunoglobulin (Santa 

Cruz Biotechnologies) and goat anti-mouse imunoglobulin (Pierce, Thermo Fisher 

Scientific), were used as secondary antibodies. Hyperfilm was developed to visualize the 

secondary antibody by the enhanced chemiluminescence reagent system (GE Healthcare, 

Amersham, UK) according to the manufacturer’s instructions. The content of HIF-1α, 

VEGF, and eNOS in cells extracts was estimated by the densitometry of scanned 

immunoblot band using the Image Master Total Lab (GE Healthcare) software. Western 

blotting was performed in granulocytes of total 60 MPN patients, but because of 

overlapping: HIF-1α was evaluated in 42 samples (12 PV, 12 ET, 18 PMF, plus 4 controls), 

VEGF in 49 samples (17 PV, 17 ET, 15 PMF, plus 4 controls), and eNOS in 40 samples (11 

PV, 12 ET, 17 PMF, plus 4 controls).

Immunocytochemistry/Immunohistochemistry

For cytoplasmatic staining, granulocytes were collected onto microscope glass slides by 

cytospins (2 × 104 cells/each) and fixed by acetone at room temperature (RT). Bone marrow 

biopsy specimens were fixed in 10% neutral formalin solution for 24–36 h, then decalcified 

in EDTA buffer for 3 h and embedded in paraffin. The tissue sections were cut at 5 μm, 

heated at 56°C for 60 min, then deparaffinized and rehydrated through a series of xylenes 

and alcohols followed by an epitope retrieval step. Samples were treated with 3% H2O2 

solution in phosphate buffered saline (PBS) to block endogenous peroxidase activity. The 

next step was incubation with anti-HIF-1α antibody (Abcam) anti-VEGF antibody (BD 

Pharmingen, Cambridge, UK) and anti-eNOS antibody (Santa Cruz Biotechnology) in a 

humidity chamber over night at RT. Immunostaining was performed using the streptavidin-

biotin technique (LSAB+/HRP Kit, DAKO). Immunoreactivity was visualized with DAKO 

Liquid DAB+ Substrate/Chromogen System counterstained with Mayer’s hematoxylin 

(Merck, Whitehouse Station, NJ). For the negative control samples, normal serum and 

trisbuffered saline (TBS) buffer (1:500) were pipetted without primary antibodies. 

Immunoreactive cells were analysed and scored at five powered fields in each sample using 

a computer-supported imaging system (Analysis Pro 3.1) connected to the light microscope 

(Olympus AX70, Hamburg, Germany) with an objective magnification of ×40. 

Immunocytochemical staining for all three angiogenic factors was evaluated in granulocytes 

of 36 cases (11 PV, 10 ET, 15 PMF, plus 4 controls). Immunohistochemical staining was 

performed in granulocytes of total 61 MPN patients, but because of overlapping: HIF-1α 
was evaluated in 36 cases (11 PV, 10 ET, 15 PMF, plus 4 controls), VEGF in 40 cases (15 

PV, 10 ET, 15 PMF, plus 5 controls), and eNOS in 36 cases (10 PV, 11 ET, 15 PMF, plus 5 

controls).

Microarray Analysis

The human oligo probe set was purchased from Operon Human Genome Array-Ready Oligo 

Set Version 4.0 (Eurofins MWG Operon, Huntsville, AL) which contained 35 035 
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oligonucleotide probes, representing approximately 25 100 unique genes. Total human 

universal RNA (HuURNA, BD Biosciences, Palo Alto, CA) served as a universal reference 

control in the competitive hybridization. In microarray studies, for determination of gene 

expression in CD34+ cells we used: eight biological replicates of healthy donors, seven 

biological replicates of PV patients, nine biological replicates of ET patients, and four 

biological replicates of PMF patients. We amplified total RNA from CD34+ cells using the 

Amino Allyl MessageAmp™ II amplified RNA (aRNA) Amplification kit (Life 

Technologies Corp., Carlsbad, CA), according to the manufacturer’s instructions using 300 

ng of total RNA for amplification. The prepared hybridization mixture of cDNA probe and 

aRNA was added on the array in slide and placed in MAUI hybridization chamber 

(BioMicro Systems, Inc., Salt Lake City, UT) and incubated overnight at 42°C. Data 

Filtration, normalization, and analysis were performed as already described [20]. The 

microarray data are available from Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/

geo; accession no. GSE55976).

Statistical Analysis

The one way ANOVA and Dunnett’s posttest were applied using Prism 4 software 

(GraphPad Software Inc., San Diego, CA). The Pearson’s correlation tests were applied 

where appropriate. The results are expressed as the mean ± SEM, and differences at P<0.05 

are accepted as the level of significance.

RESULTS

Angiogenic Factors Gene Expression in Granulocytes and CD34+ of MPN Patients

Using DNA sequencing of 160 MPN patients, JAK2V617F mutation was detected in all PV 

patients and 53% of ET and 61% of PMF patients. CALR mutations type 1 and 2 were 

detected in 69% of ET and 83% of PMF patients negative for JAK2V617F mutation. We 

found that granulocytes of PV patients had significantly reduced HIF-1α gene expression in 

comparison to controls (P < 0.05), as well as PMF patients without JAK2V617F mutation 

(Figure 1A). In CD34+ cells of MPNs and granulocytes of ET patients, the HIF-1α 
expression did not significantly change compared to controls (not shown). In granulocytes of 

MPN patients, VEGF demonstrated decreased expression in ET and PMF patients without 

JAK2V617F and PV homozygous for JAK2V617F mutation (Figure 1B). In CD34+ cells, 

expression of VEGF was significantly decreased in PV and ET patients (P < 0.05, not 

shown). eNOS mRNA levels were generally significantly increased in granulocytes of MPN 

patients (Figure 1C), as well as in CD34+ cells of PMF (P < 0.01, not shown). HIF-1α and 

VEGF gene expression, independently of JAK2 status, did not change significantly in 

granulocytes of MPNs, in contrast to eNOS.

Angiogenic Factor Levels in Circulating Granulocytes and CD34+ Cells of MPN Patients

Angiogenic factors, at protein level, were significantly increased in ET and PV 

independently of JAK2 status (Figure 2A). Our immunoblotting analyses of total HIF-1a 

protein expression revealed a significant increase in granulocytes of MPN patients, 

demonstrating dependence of JAK2V617F mutant allele burden only in PMF (Figure 2B). 

The activated HIF-1α was significantly increased only in nuclear fraction of PV 
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granulocytes (1.73 fold, not shown). Also, VEGF protein levels were increased in PV and 

ET patients, but only significantly increased in JAK2V617F homozygous PMF patients 

(Figure 2C). However, among the PV homozygous JAK2V617F patients, there is a negative 

correlation between VEGF and HIF-1α protein levels (r − 0.969, P < 0.001, Table 1). 

Examination of the eNOS protein levels in granulocytes showed a significant increase of this 

protein in MPN patients (Figure 2D). In addition, among ET patients without JAK2V617F 

mutation, there is a negative correlation between eNOS and HIF-1α protein levels (r − 

0.939, P < 0.05). The increased angiogenic factors were almost generally and significantly 

increased in JAK2V617F positive patients with PMF.

While immunocytochemical analyses of CD34+ cells showed a significant increase of 

angiogenic factors in MPN patients independent of JAK2 mutation (Figure 3A), a negative 

correlation between HIF-1α and VEGF was noted in CD34+ cells among ET patients (r − 

0.797, P < 0.05). Similarly, but less prominent, the percentage of HIF-1α, VEGF-, and 

eNOS-positive cells was significantly increased in granulocytes of MPN patients, except for 

VEGF in PMF (Figure 3B). Increased quantity of angiogenic factor positive cells in 

granulocytes of MPNs was not influenced by JAK2V617F mutant allele burden (Figure 4A–

C). In addition, between VEGF and eNOS there is a significant positive correlation in PV 

(JAK2V617F heterozygous r = 0.536, P < 0.05, homozygous r = 0.723, P < 0.001) and PMF 

patients (JAK2V617F absent r = 0.726, P < 0.001, heterozygous r = 0.709, P < 0.001, 

homozygous r = 0.859, P < 0.001) as well as in JAK2V617F heterozygous ET (r = 0.406, P 
< 0.05, Table 1). While number of HIF-1α-positive cells was increased overall in the MPN 

patients relative to control, except for PMF patients homozygous for JAK2V617F (Figure 

4A), a negative correlation was noted between HIF-1α and VEGF among JAK2V617F 

heterozygous PMF patients (r −0.513, P < 0.05). Interestingly, the immunocytochemical 

analysis of granulocytes of MPN patients showed significant and uniform decrease in 

percentage of the angiogenic factors positive cells after therapy with hydroxyurea (Figure 

5A–C). This decrease in percentage of positive cells was particularly striking in PV patients 

for the angiogenic factors (especially HIF-1α), regarding their increased levels in 

comparison to ET and PMF patients.

Angiogenic Factors Levels in Bone Marrow of MPN Patients

The percentage of HIF-1α positive cells in the cytoplasm of bone marrow stroma cells 

showed a significant increase in JAK2V617F heterozygous PV (Figure 6A). A significant 

increase of HIF-1α positive cells was also observed in bone marrow of PMF patients 

without JAK2V617F mutation (Figure 6A), with decreased levels in the nucleus of MPN 

bone marrow stroma cells (not shown). A significant increase in percentage of VEGF 

positive cells was observed in bone marrow of JAK2V617F heterozygous PV and ET 

patients (Figure 6B). In bone marrow of PMF patients it was evident an increased percentage 

of eNOS, significant in JAK2V617F heterozygous PMF patients (Figure 6C). A significant 

reduction in percentage of eNOS was apparent in JAK2V617F negative ET patients (Figure 

6C). In addition, there is a significant positive correlation between eNOS and VEGF positive 

cells in bone marrow of PMF patients without JAK2V617F mutation (r = 0.703, P < 0.05, 

Table 1). According to presented results, the JAK2V617F mutant allele burden did not 

demonstrate steady influence to angiogenic factors in bone marrow stroma of MPN patients. 
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VEGF, eNOS, and HIF-1α were expressed by the same bone marrow populations: 

megakaryocytes, macrophages, and myeloid precursors that revealed a moderate to strong 

immunostaining intensity in MPNs.

Angiogenesis Related Signaling Pathways in CD34+ Cells of MPN

Using microarray analysis we presented activation of angiogenesis related signaling 

pathways and genes in CD34+ cells of MPNs (Figure 7). We can see that components of 

protein kinase C (PKC), transforming growth factor-beta (TGFβ) and mitogen-activated 

protein kinase (MAPK) signaling pathways were largely activated, while less prominent in 

PI3K/AKT signaling pathway. So, the CD34+ cell proliferation, actin rearrangement and 

migration were stimulated, whereas a cell survival was less affected in MPNs. MAPK1, 

PLCG2, and TGFBR1 gene expression was absent in controls, but increased in MPN CD34+ 

cells (Table 2). Also, SMAD2 and PIK3R1 gene expression was sporadically present in 

healthy controls and increased in MPN CD34+ cells. The statistically significant increase 

was observed for RAC1 (in PMF) and RAC2 (in PV) genes, while reduction for KRAS and 

RAC3 genes (in ET) in comparison to controls. In CD34+ cells of ET, presence of 

JAK2V617F mutation augmented PXN and reduced RAC3 (P < 0.05, not shown) gene 

expression. In PV patients homozygous for JAK2V617F mutation, HIF-1α gene expression 

was further reduced and AKT2 was increased (P < 0.05), although RAC2 and PXN genes 

had increased expression in PV patients heterozygous for JAK2V617F (P < 0.01, not 

shown).

Angiogenic Factor Levels According to Calreticulin Mutation in MPN Patients

To examine does CALR status impact the gene and protein expression of angiogenic factors 

in ET and PMF, we performed parallel studies in accordance to CALR mutations. It has 

been observed that HIF-1α and VEGF mRNA expression has been significantly reduced in 

granulocytes of ET and PMF, not influenced by CALR mutations (Figure 8A). In contrast, 

eNOS mRNA levels were significantly increased in ET regardless of CALR status, but more 

prominent in the absence of CALR mutation (Figure 8A). On the protein level, angiogenic 

factors were generally increased in granulocytes of ET demonstrating significance, except 

VEGF in CALR mutation negative patients (Figure 8B). Only eNOS demonstrated CALR 
mutation dependence, significantly increased (P < 0.05) in ET patients with CALR mutation. 

In PMF patients, only HIF-1α protein has been increased with CALR wild type (Figure 8B). 

Besides HIF-1α and VEGF positive cells, increased eNOS positive granulocytes 

demonstrated significance in CALR mutation positive versus negative ET patients (Figure 

8C). HIF-1α positive granulocytes were also increased in PMF, regardless of CALR status, 

while VEGF positive cells were significantly increased (P < 0.05) in CALR mutation 

negative versus positive PMF patients (Figure 8C). The eNOS positive granulocytes were 

significantly increased in PMF with CALR mutation (Figure 8C). It has been observed 

significantly decreased VEGF and eNOS levels (P < 0.05) in CD34+ cells of ET patients 

with CALR mutation (not shown). Imunohistochemical analysis of bone marrow stroma 

cells of ET and PMF patients revealed that angiogenic factors were not influenced by CALR 
status (not shown).
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DISCUSSION

We analyzed levels of key angiogenic molecules HIF-1α, VEGF, and eNOS in peripheral 

blood and bone marrow of MPNs and determined their correlation with JAK2V617F 

mutational status and therapy. We found commonly decreased HIF-1α and VEGF gene 

expression in granulocytes while eNOS mRNA levels were generally increased in 

granulocytes of MPNs. Analyses of angiogenic proteins expression showed their significant 

increase in granulocytes of MPN patients. Immunocytochemical analyses of granulocytes 

and CD34+ cells confirmed that the percentages of HIF-1α, VEGF, and eNOS positive cells 

were generally increased, with positive correlation between VEGF and eNOS. 

Immunohistochemical analyses of bone marrow revealed increased percentage of HIF-1α 
positive cells in the cytoplasm of PV patients and decreased in the nucleus of MPN patients, 

while the percentages of VEGF and eNOS positive cells were increased in JAK2 mutation 

positive ET and PMF patients, respectively. The eNOS protein expression demonstrated 

CALR dependence in granulocytes of ET patients, stimulated by the presence of CALR 

mutation.

Patients with PV and PMF showed an increased microvessel density compared to ET or 

healthy controls, while VEGFR-1 protein expression correlated with microvessel density and 

increased VEGF expression in bone marrow of MPNs [21–23]. The bone marrow VEGF 

expression positively correlated with increased serum levels of VEGF in MPNs [18,24]. The 

VEGF concentration was also increased in plasma of patients with ET [25]. Our results 

showed that ET patients, heterozygous for JAK2 mutation, had significantly increased 

percentage of VEGF positive cells in bone marrow. Augmented quantities of neutrophil 

granulocytes have been detected in the peripheral blood and tumor tissues of patients with 

cancers [26], as well as leukocytes and thrombocytes in MPNs [20]. Activated neutrophil 

granulocytes released VEGF and were directly angiogenic by stimulating macrovascular and 

microvascular endothelial cell proliferation and tubule formation [27]. Vice versa VEGF 

recruited the proangiogenic circulating subset of neutrophils that expressed large amount of 

matrix metalloproteinase 9 (MMP-9) that mediates angiogenesis [28]. In our study group, 

VEGF protein expression was generaly increased in granulocytes of MPN patients, reaching 

statistical significance in majority of JAK2V617F defined groups. There is a positive 

correlation between VEGF and eNOS levels in granulocytes of MPNs. VEGF-mediated 

eNOS Ser1177 phosphorylation controlled angioblast and endothelial cells division, 

activating vasculogenesis and angiogenesis [29]. Increased microvessel density, evaluated by 

CD34+ cells, correlated with the absolute number of VEGF positive cells and fibrosis in 

MPNs [12]. According to presented results, the percentage of VEGF positive cells was also 

significantly increased in CD34+ cells of MPN patients. A pathological interaction between 

polymorphonuclear leukocytes and megakaryocytes correlated with myelofibrosis 

development [30].

In the absence of HIF-1α, fewer bone marrow-derived CD45+ myeloid cells are recruited to 

the tumors, decreasing mobilization of VEGF [31]. VEGF negatively correlated with 

HIF-1α in granulocytes of PV and PMF as well as in CD34+ cells of ET in our results. 

Further on, NO increased the VEGF gene expression by augmenting HIF-1 activity [32]. In 

a positive feedback, the VEGF-induced angiogenesis involved NO production from activated 
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eNOS [33]. According to our results, eNOS gene and protein expressions were increased in 

granulocytes of MPN patients, while the percentage of eNOS and VEGF positive cells were 

characterised with a significant positive correlation in granulocytes and bone marrow. 

Activated HIF-1α protein levels were increased in nuclear fraction of granulocytes from PV 

and ET patients. Hydroxyurea treatment reduced erythroid progenitor and CD34+ cells 

growth in PV and ET [34]. The level of VEGF in patients on hydroxyurea therapy were 

significantly lower than in untreated ET patients [13]. Namely, in order to determine changes 

in HIF-1α, VEGF and eNOS positive granulocytes of patients treated with hydroxyurea, we 

found significantly decreased percentage of the angiogenic factors positive cells in MPN 

patients after hydroxyurea treatment.

AKT inhibitor suppressed colony formation from hematopoietic progenitor cells in PMF and 

reduced megakaryocytic burden in bone marrow [35]. PKC-epsilon transgenic mice 

spontaneously developed a myeloproliferative-like disease, with significant increases of 

neutrophils in peripheral blood and bone marrow [36]. Double inhibition of PI3K/AKT and 

mammalian target of rapamycin (mTOR) signaling induced cell-cycle growth arrest and 

apoptosis of CD34+ PMF cells [37]. It has been shown that MPN patients have increased 

peripheral blood and bone marrow plasma levels of both bioactive and total TGFβ1 [38]. 

Moreover, we already demonstrated the increased proinflammatory IL-6 levels in patients 

with MPN [39]. According to our microarray analysis of angiogenesis related signaling: 

proinflammatory PKC, TGFβ, and MAPK signaling pathways demonstrated upregulation of 

related gene members, in contrast to limited anti-inflammatory PI3K/AKT signaling 

pathway.

Patients with JAK2-mutated ET had higher risk of thrombosis and transformation than those 

with CALR-mutated ET. A significant proportion of patients with JAK2-mutated ET, but 

none of those with a CALR mutation, progressed to PV during their clinical course [40]. 

Increased NO levels and activation of eNOS were detected in human umbilical vein 

endothelial cells by CALR stimulation [41], in accordance with our finding that mutated 

CALR stimulated eNOS protein levels and positive cells in ET. The gain of-function 

property of mutant CALR preferentially associated with c-MPL, the TPO receptor, led to 

constitutive activation of AKT and activation of eNOS, demonstrating CALR interaction 

with angiogenic factors [42–44]. Neutrophil elastase cleaves an N-terminus CALR peptide 

characterized as vasostatin, while levels of serum vasostatin in acute myeloid leukemia 

inversely correlated with bone marrow vascularization [45]. Overexpressed CALR 

upregulated the expression and secretion of VEGF and correlated with high microvessel 

density [46].

We showed the angiogenic factors were generally increased in examined tissues of MPN 

patients. Angiogenic factors had more pronounced levels in granulocytes and CD34+ cells, 

than in bone marrow stroma cells, demonstrating the importance of inflammatory 

granulocytes in angiogenesis development. HIF-1α protein expression negatively correlated 

with eNOS and VEGF in granulocytes, while the later two angiogenic factors levels shared 

significant positive correlation in patients with MPNs. The numbers of VEGF, HIF-1a and 

eNOS immuno positive cells were significantly lower in MPN patients after therapy with 

hydroxyurea, and may relates to prolonged survival and better quality of life.
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HIF-1α hypoxia-inducible factor-1a

KRAS kirsten rat sarcoma viral oncogene homolog

MAPK mitogen-activated protein kinase

MMP-9 matrix metalloproteinase 9

MPN myeloproliferative neoplasm

NO nitric oxide

PIK3R1 phosphoinositide-3-kinase regulatory subunit 1

PKC protein kinase C

PMF primary myelofibrosis

PV polycythemia vera

PLCG2 1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2

PXN paxillin

RAC 1/2/3 Ras-related C3 botulinum toxin substrate 1/2/3

SMAD2 SMAD family member 2

TGFβ transforming growth factor-beta

TGFBR1 TGF-beta receptor type-1

VEGF vascular endothelial growth factor

Subotički et al. Page 11

Mol Carcinog. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REFERENCES

1. El-Kenawi AE, El-Remessy AB. Angiogenesis inhibitors in cancer therapy: Mechanistic perspective 
on classification and treatment rationales. Br J Pharmacol 2013;170:712–729. [PubMed: 23962094] 

2. Shibuya M Vascular endothelial growth factor and its receptor system: Physiological functions in 
angiogenesis and pathological roles in various diseases. J Biochem 2013;153:13–19. [PubMed: 
23172303] 

3. Ahn GO, Seita J, Hong BJ, et al. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in 
myeloid cells promotes angiogenesis through VEGF and S100A8. Proc Natl Acad Sci USA 
2014;111:2698–2703. [PubMed: 24497508] 

4. Inglis DJ, Lavranos TC, Beaumont DM, et al. The vascular disrupting agent BNC105 potentiates the 
efficacy of VEGF and mTOR inhibitors in renal and breast cancer. Cancer Biol Ther 2014;15:1552–
1560. [PubMed: 25482941] 

5. Storti P, Bolzoni M, Donofrio G, et al. Hypoxia-inducible factor (HIF)-1α suppression in myeloma 
cells blocks tumoral growth in vivo inhibiting angiogenesis and bone destruction. Leukemia 
2013;27:1697–1706. [PubMed: 23344526] 

6. Lee BL, Kim WH, Jung J, et al. A hypoxia-independent upregulation of hypoxia-inducible factor-1 
by AKT contributes to angiogenesis in human gastric cancer. Carcinogenesis 2008;29:44–51. 
[PubMed: 17984117] 

7. Cattaneo MG, Cappellini E, Benfante R, et al. Chronic deficiency of nitric oxide affects hypoxia 
inducible factor-1α (HIF-1a) stability and migration in human endothelial cells. PLoS ONE 
2011;6:e29680. [PubMed: 22216344] 

8. Grimm EA, Sikora AG, Ekmekcioglu S. Molecular pathways: Inflammation-associated nitric-oxide 
production as a cancer supporting redox mechanism and a potential therapeutic target. Clin Cancer 
Res 2013;19:5557–5563. [PubMed: 23868870] 

9. Roberts DD, Isenberg JS, Ridnour LA, Wink DA. Nitric oxide and its gatekeeper thrombospondin-1 
in tumor angiogenesis. Clin Cancer Res 2007;13:795–798. [PubMed: 17289869] 

10. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in 
myeloproliferative disorders. N Engl J Med 2005;352:1779–1790. [PubMed: 15858187] 

11. Baxter EJ, Scott LM, Campbell PJ, et al. Cancer Genome Project. Acquired mutation of the 
tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365: 1054–1061. 
[PubMed: 15781101] 

12. Medinger M, Skoda R, Gratwohl A, et al. Angiogenesis and vascular endothelial growth factor-/
receptor expression in myeloproliferative neoplasms: Correlation with clinical parameters and 
JAK2-V617F mutational status. Br J Haematol 2009;146:150–157. [PubMed: 19466975] 

13. Treliński J, Wierzbowska A, Krawczyńska A, et al. Plasma levels of angiogenic factors and 
circulating endothelial cells in essential thrombocythemia: Correlation with cytoreductive therapy 
and JAK2-V617F mutational status. Leuk Lymphoma 2010;51:1727–1733. [PubMed: 20615083] 

14. Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A. Concise review: Evidence for CD34 
as a common marker for diverse progenitors. Stem Cells 2014;32:1380–1389. [PubMed: 
24497003] 

15. Hristov M, Weber C. Endothelial progenitor cells in vascular repair and remodeling. Pharmacol 
Res 2008;58:148–151. [PubMed: 18722530] 

16. Siemerink MJ, Klaassen I, Vogels IM, Griffioen AW, Van Noorden CJ, Schlingemann RO. CD34 
marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis 2012;15:151–
163. [PubMed: 22249946] 

17. Medinger M, Mross K. Clinical trials with anti-angiogenic agents in hematological malignancies. J 
Angiogenes Res 2010;2:10. [PubMed: 20569499] 

18. Alonci A, Allegra A, Bellomo G, et al. Evaluation of circulating endothelial cells, VEGF and 
VEGFR2 serum levels in patients with chronic myeloproliferative diseases. Hematol Oncol 
2008;26:235–239. [PubMed: 18504767] 

19. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in 
myeloproliferative neoplasms. N Engl J Med 2013;369:2379–2390. [PubMed: 24325356] 

Subotički et al. Page 12

Mol Carcinog. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. Čokić VP, Mossuz P, Han J, et al. Microarray and proteomic analyses of myeloproliferative 
neoplasms with a highlight on the mTOR signaling pathway. PLoS ONE 2015;10:e0135463. 
[PubMed: 26275051] 

21. Wrobel T, Mazur G, Surowiak P, Wolowiec D, Jelen M, Kuliczkowsky K. Increased expression of 
vascular endothelial growth factor (VEGF) in bone marrow of patients with myeloproliferative 
disorders (MPD). Pathol Oncol Res 2003;9:170–173. [PubMed: 14530810] 

22. Boiocchi L, Vener C, Savi F, et al. Increased expression of vascular endothelial growth factor 
receptor 1 correlates with VEGF and microvessel density in Philadelphia chromosome negative 
myeloproliferative neoplasms. J Clin Pathol 2011;64: 226–231. [PubMed: 21217153] 

23. Steurer M, Zoller H, Augustin F, et al. Increased angiogenesis in chronic idiopathic myelofibrosis: 
Vascular endothelial growth factor as a prominent angiogenic factor. Hum Pathol 2007;38:1057–
1064. [PubMed: 17442379] 

24. Panteli K, Bai M, Hatzimichael E, Zagorianakou N, Agnantis NJ, Bourantas K. Serum levels, and 
bone marrow immunohistochemical expression of, vascular endothelial growth factor in patients 
with chronic myeloproliferative diseases. Hematology 2007;12:481–486. [PubMed: 17852434] 

25. Musolino C, Calabro L, Bellomo G, et al. Soluble angiogenic factors: Implications for chronic 
myeloproliferative disorders. Am J Hematol 2002;69:159–163. [PubMed: 11891801] 

26. Dumitru CA, Lang S, Brandau S. Modulation of neutrophil granulocytes in the tumor 
microenvironment: Mechanisms and consequences for tumor progression. Semin Cancer Biol 
2013;23:141–148. [PubMed: 23485549] 

27. McCourt M, Wang JH, Sookhai S, Redmond HP. Proinflammatory mediators stimulate neutrophil-
directed angiogenesis. Arch Surg 1999;134:1325–1331. [PubMed: 10593330] 

28. Christoffersson G, Vågesjö E, Vandooren J, et al. VEGF-A recruits a proangiogenic MMP-9-
delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 
2012;120:4653–4662. [PubMed: 22966168] 

29. Gentile C, Muise-Helmericks RC, Drake CJ. VEGF-mediated phosphorylation of eNOS regulates 
angioblast and embryonic endothelial cell proliferation. Dev Biol 2013;373: 163–175. [PubMed: 
23103584] 

30. Schmitt A, Drouin A, Massé JM, Guichard J, Shagraoui H, Cramer EM. Polymorphonuclear 
neutrophil and megakaryocyte mutual involvement in myelofibrosis pathogenesis. Leuk 
Lymphoma 2002;43:719–724. [PubMed: 12153156] 

31. Du R, Lu KV, Petritsch C, et al. HIF1alpha induces the recruitment of bone marrow-derived 
vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008;13:206–
220. [PubMed: 18328425] 

32. Hl Kimura, Weisz A, Kurashima Y, et al. Hypoxia response element of the human vascular 
endothelial growth factor gene mediates transcriptional regulation by nitric oxide: Control of 
hypoxia-inducible factor-1 activity by nitric oxide. Blood 2000;95:189–197. [PubMed: 10607702] 

33. Jl Kroll, Waltenberger J. VEGF-A induces expression of eNOS and iNOS in endothelial cells via 
VEGF receptor-2 (KDR). Biochem Biophys Res Commun 1998;252:743–746. [PubMed: 
9837777] 

34. Andreasson B, Swolin B, Kutti J. Hydroxyurea treatment reduces haematopoietic progenitor 
growth and CD34 positive cells in polycythaemia vera and essential thrombocythaemia. Eur J 
Haematol 2000;64:188–193. [PubMed: 10997885] 

35. Khan I, Huang Z, Wen Q, et al. AKT is a therapeutic target in myeloproliferative neoplasms. 
Leukemia 2013;27: 1882–1890. [PubMed: 23748344] 

36. Wheeler DL, Reddig PJ, Ness KJ, Leith CP, Oberley TD, Verma AK. Overexpression of protein 
kinase C-{epsilon} in the mouse epidermis leads to a spontaneous myeloproliferative-like disease. 
Am J Pathol 2005;166:117–126. [PubMed: 15632005] 

37. Fiskus W, Verstovsek S, Manshouri T, et al. Dual PI3K/AKT/mTOR inhibitor BEZ235 
synergistically enhances the activity of JAK2 inhibitor against cultured and primary human 
myeloproliferative neoplasm cells. Mol Cancer Ther 2013;12: 577–588. [PubMed: 23445613] 

38. Campanelli R, Rosti V, Villani L, et al. Evaluation of the bioactive and total transforming growth 
factor β1 levels in primary myelofibrosis. Cytokine 2011;53:100–106. [PubMed: 20801055] 

Subotički et al. Page 13

Mol Carcinog. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39. Čokić VP, Mitrović-Ajtić O, Beleslin-Čokić BB, et al. Proinflammatory cytokine IL-6 and JAK-
STAT signaling pathway in myeloproliferative neoplasms. Mediators Inflamm. 2015; 
2015:453020. [PubMed: 26491227] 

40. Rumi E, Pietra D, Ferretti V, et al. JAK2 or CALR mutation status defines subtypes of essential 
thrombocythemia with substantially different clinical course and outcomes. Blood. 
2014;123:1544–1551. [PubMed: 24366362] 

41. Ding H, Hong C, Wang Y, et al. Calreticulin promotes angiogenesis via activating nitric oxide 
signalling pathway in rheumatoid arthritis. Clin Exp Immunol. 2014;178:236–244. [PubMed: 
24988887] 

42. Araki M, Yang Y, Masubuchi N, et al. Activation of the thrombopoietin receptor by mutant 
calreticulin in CALR mutant myeloproliferative neoplasms. Blood. 2016;127: 1307–1316. 
[PubMed: 26817954] 

43. Han L, Schubert C, Köhler J, et al. Calreticulin-mutant proteins induce megakaryocytic signaling 
to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated 
secretion. J Hematol Oncol. 2016; 9:45. [PubMed: 27177927] 

44. Cokic VP, Beleslin-Cokic BB, Tomic M, Stojilkovic SS, Noguchi CT, Schechter AN. Hydroxyurea 
induces the eNOS-cGMP pathway in endothelial cells. Blood 2006;108:184–191. [PubMed: 
16527893] 

45. Mans S, Banz Y, Mueller BU, Pabst T. The angiogenesis inhibitor vasostatin is regulated by 
neutrophil elastase dependent cleavage of calreticulin in AML patients. Blood 2012;120:2690–
2699. [PubMed: 22915645] 

46. Chen CN, Chang CC, Su TE, et al. Identification of calreticulin as a prognosis marker and 
angiogenic regulator in human gastric cancer. Ann Surg Oncol 2009;16:524–533. [PubMed: 
19050968] 

Subotički et al. Page 14

Mol Carcinog. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
mRNA expression of HIF-1α, VEGF, and eNOS gene in granulocytes of MPN patients. (A) 

HIF-1α gene expression was significantly reduced in PV heterozygous (htz), homozygous 

(hom), and PMF without JAK2V617F mutation (NM) patients, while (B) VEGF gene 

expression was reduced in PV homo, ET, and PMF NM patients compared to controls (c). 

(C) Increased eNOS gene expression in MPN patients is presented as direct ratio with 

controls using SYBR Green. Values are mean SEM (n = 5–10 patients per individual JAK2 

mutant allele burden: hom, htz, and NM). *P < 0.05, **P < 0.01, and ***P < 0.001.
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Figure 2. 
Expression of HIF-1α, VEGF, and eNOS proteins in granulocytes of MPN patients 

determined by immunoblotting. Densitometry revealed increased protein expression of (A) 

angiogenic factors in MPNs; (B) total HIF-1α in MPN patients heterozygous (htz), 

homozygous (hom), and no JAK2V617F mutation (NM, n = 6 patients per individual JAK2 

mutant allele burden); (C) VEGF in htz, hom, and NM (n = 5–9); (D) eNOS proteins in htz, 

hom, and NM (n = 5–7) of MPN patients compared to controls (c, n = 4). Values are mean ± 

SEM. *P < 0.05, **P < 0.01, and ***P < 0.001.
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Figure 3. 
Immunocytochemical analysis of angiogenic factors positive cells in CD34+ cells and 

granulocytes of MPN patients. The percentage of angiogenic factors showed a significant 

increase in (A) CD34+ cells (n = 5 per individual MPN) and (B) granulocytes of ET, PV, and 

PMF patients (n = 10–15). Values are mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 

0.001.
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Figure 4. 
Immunocytochemical analysis of angiogenic factors positive cells in granulocytes of MPN 

patients according to JAK2V617F mutant allele burden. Quantitative analysis of (A) 

HIF-1α, (B) VEGF, and (C) eNOS percentage of positive cells in granulocytes revealed its 

significant increase in MPN patients heterozygous (htz), homozygous (hom), or no 

JAK2V617F mutation (NM) versus controls (c), n = 5–6 patients per individual JAK2 

mutant allele burden and controls. Values are mean ± SEM. **P < 0.01.
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Figure 5. 
Immunocytochemical analysis of angiogenic factors positive cells in granulocytes of MPN 

patients after at least 6 months therapy with hydroxyurea (HU). A significant decrease in 

percentage of (A) HIF-1α, (B) VEGF, and (C) eNOS positive cells in ET, PV, and PMF (n = 

3× 6 patients before and after therapy with HU). Values are mean ± SEM. ***P < 0.001.
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Figure 6. 
Immunohistochemical analysis of angiogenic factors positive cells in the bone marrow of 

MPN patients. (A) Increased percentage of cytoplasmatic HIF-1α positive cells is apparent 

in PV htz and PMF no JAK2V617F mutation (NM) patients presented in adjacent 

immunohistochemical graphs. (B) It has been detected a significant increase in percentage of 

VEGF positive cells in ET htz and decrease in PV htz patients, while (C) eNOS positive 

cells are increased in PMF htz patients and reduced in ET NM patients versus controls (c). 

Arrows indicate positive brown cells. Corresponding controls are at the bottom left corner of 

immunohistochemical graphs. Bar 50 μm. Values are mean ± SEM (n = 5–6 patients per 

individual JAK2 mutant allele burden). *P < 0.05, **P < 0.01.
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Figure 7. 
Angiogenesis signaling pathway in CD34+ cells of MPN origin. (+p) phosphorylation, → 
stimulation; empty boxes represent downregulated, gray boxes no changed and black boxes 

upregulated genes versus control (corresponding to Table 2).
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Figure 8. 
Expression of angiogenic factors according to CALR status in granulocytes of MPN 

patients. (A) HIF-1α and VEGF gene expression were significantly reduced in PV and PMF, 

while eNOS gene expression (presented as direct ratio with controls using SYBR Green) 

was increased in ET. (B) Increased angiogenic factors protein expression in ET determined 

by Western blot. (C) Increased levels of angiogenic factors positive cells in ET and PMF 

determined by immunocytochemistry. Values are mean ± SEM (n = 4–5). *P < 0.05, **P < 

0.01, and ***P < 0.001.
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