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Background: Zinc is an essential micronutrient for humans with important physiological functions. A
sensitive and specific biomarker for assessing Zn status is still needed.

Objective: The major aim of this study was to examine if the changes in the content of plasma phos-
pholipid LA, DGLA and LA: DGLA ratio can be used to efficiently predict the dietary Zn intake and plasma

Kfeywords.' Zn status of humans.
i“:: . ” Methods: The study was performed on healthy human volunteers, 25—55 years of age. The dietary Zn
LZ' BlljéCLIA composition intake was assessed using 24 h recall questionnaires. Plasma phospholipid fatty acid analysis was done

by gas chromatography, and plasma analysis of minerals by atomic absorption spectrometry. Biochem-
ical, anthropometrical and hematological parameters were assessed.
Results: No significant relationship was found between the dietary and plasma zinc status (r = 0.07;
p = 0.6). There was a statistically significant correlation between DGLA and plasma Zn (r = 0.39,
p = 0.00). No relationship was observed between the linoleic acid and plasma Zn, while there was a
significant negative correlation between LA: DGLA ratio and plasma Zn status (r = —0.35, p = 0.01).
Similarly, there were statistically significant difference in DGLA status (p = 0.004) and LA: DGLA ratio
(p = 0.042) between the Zn formed groups.
Conclusions: This study is an initial step in evaluating LA: DGLA ratio as a biomarker of Zn status in
humans. The results are encouraging as they show that concentration of DGLA is decreased and LA: DGLA
ratio increased in people with lower dietary Zn intake. However, additional studies are needed to fully
examine the sensitivity of this biomarker.
© 2016 The Authors. Published by Elsevier Ltd on behalf of European Society for Clinical Nutrition and
Metabolism. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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1. Introduction

Zinc (Zn) is an essential nutrient for human health with many
important biological functions. It plays a significant role in growth
and development, cell mediated immunity, protein synthesis, skin
and bone metabolism, enzyme function, gene expression, and
hormonal excretion [1—3]. Deficiency of Zn may severely affect the
homeostasis of a biological system and insufficient Zn intake has
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profound consequences at all points of the human lifecycle, from
the point of conception through to old age [4].

Zn deficiency is very common, with an estimated 2 billion
people worldwide being affected by dietary Zn deficiency [5]. Zn
inadequacy is identified as a major contributor to the burden of
disease in developing countries [6,7].

Nonetheless, a suboptimal Zn status is not easily determined
due to the lack of clinical signs and reliable biochemical indicators
of Zn status. It is generally accepted that there is currently no
specific, reliable biomarker of zinc status [4]. Out of 32 potential
biomarkers from 46 publications in humans, serum/plasma zinc
concentrations, hair Zn concentration and urinary Zn excretion are
the only three biomarkers identified as potentially useful [4].
However, there are still considerable reservations in terms of
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reliability of these biomarkers due to the effect of multiple con-
founders such as infection, inflammatory conditions and the time of
last meal [8]. Similarly, the serum/plasma Zn biomarker is
perceived as an unresponsive index of Zn nutritional status due to
effective homeostatic regulation which responds to alterations in
zinc intake, up-regulating absorption and conserving losses via GI
tract and kidneys, when intakes fall [4]. Thus, it clear that there is a
need for the development/discovery of a new biological marker of
Zn status.

Recent studies by Reed et al., 2014 showed a significant negative
correlation between dietary zinc deficiency and the ratio of
erythrocyte phospholipid linoleic acid: dihomo-vy-linolenic acid
(LA: DGLA) in-vivo using the chicken model, Gallus Gallus. The au-
thors clearly demonstrated that LA: DGLA is able to differentiate
zinc status between zinc adequate and zinc deficient subjects,
showing that LA: DGLA ratio can be used as an effective tool to
detect an early stage of zinc deficiency before the onset of symp-
toms [9]. It seems reasonable to postulate that the same relation-
ship may exist in humans and that the LA: DGLA ratio may well
prove to be a novel, effective, noninvasive, sensitive and reliable
biomarker of Zn status in humans.

The major aim of this study was to assess the correlations of
plasma phospholipid content of linoleic (LA, 18:2n-6), dihomo-y-
linolenic acid (DGLA, 20:3n-6) and LA: DGLA ratio, with plasma Zn
status and dietary Zn intake in human subjects. This study presents
an initial, and at the same time, an essential step, in the process of
validating if the newly proposed biomarker of Zn status, LA: DGLA
ratio, can be used as a valid, sufficiently sensitive and reliable
biomarker of Zn status in human subjects. In addition to this, in this
study we examine the correlations of plasma Zn status and dietary
Zn intake with the content of ten additional fatty acids in plasma
phospholipids. Furthermore, this study looks at the correlations
between Zn and other trace elements, comments on the dietary Zn
intake of the study population and explains the correlations be-
tween the plasma Zn status, dietary Zn intake and plasma LA: DGLA
ratio with numerous anthropometrical, biochemical and hemato-
logical measures.

2. Materials and methods
2.1. Study participants

The study participants (n = 54) were apparently healthy 28—55
years old males and females volunteers. Eligible subjects included
non-smoking volunteers, without any clinical signs of an acute
condition or chronic disease, and without the need for medical
treatment. Strict inclusion/exclusion criteria has been used (please
refer to supplementary material for more information). All subjects
went through the informed consent process, both verbal and
written. The study protocol was approved by the Clinical Hospital
Centre Zemun, Belgrade, Serbia, Ethics Committee Approval, No:
2125, 2013; and by SAC HREC EC00188 (96.15), Adelaide, South
Australia. The protocols and procedures of the study were in
agreement with the ethical guidelines on biomedical research on
human subjects of The Code of Ethics of the World Medical Asso-
ciation's Declaration of Helsinki (1964) and its further
amendments.

2.2. Collection of blood samples and anthropometric measurements

Blood samples were collected between 8 and 9 a.m. after an
overnight fast (>10hr fasting). Whole-blood samples were collected
from participants in seated position at in a trace mineral free tube
by venipuncture from an antecubital vein using butterfly needles
(Sarstedt, Inc.). All samples were centrifuged (1000 x g for 15 mm).

The serum and plasma samples were removed and 1 ml aliquots
were stored at — 80 °C until further analysis.

Anthropometric variables height and weight were measured to
the nearest 0.1 cm and 0.1 kg, respectively. The weight and percent
of fat mass in the body composition of participants were measured
using a TANITA UMO072 balance (TANITA Health Equipment H.K.
LTD). The body mass index (BMI) was computed as the ratio of
weight (kg) to height squared (m?). BMI was used to assess the
prevalence of overweight (25—29.9 kg/m?) and obesity (>30 kg/
m?) according to WHO criteria [10].

2.3. The assessment of dietary Zn intake

Three 24 h recall questionnaires (interactive, validated) run on
three non-consecutive days (two working days and one weekend
day) were used for assessing dietary Zn intake of participants. The
photographs of different foods and composite dishes were used
during the interview to help improve the portion size estimations
[11]. The zinc content of foods was determined using the Serbian
food composition data base (FCDB) [12,13]. DIETS ASSESS & PLAN,
a nutritional tool validated in different national and regional sur-
veys and international projects, evaluated in the EFSA project [14]
was used for obtaining comprehensive dietary intake assessments.
The dietary intakes from administered questionnaires were
calculated by multiplying the frequency of consumption of each
food item consumed by composition of that food, using adequate
portion sizes. In addition to Zn dietary intake data were obtained
for energy, macronutrients, Fe and certain fatty acids. Total zinc
intakes were adjusted for total energy intake using the residual
method [15,16]. Zinc levels in the participants' diets were verified
using the Estimated Average Requirement, as defined in the Di-
etary Reference Intakes (DRIs) provided by the Institute of Medi-
cine [17].

2.4. Biochemical analysis

The biochemical parameters were measured using a Cobas e411
clinical chemistry analyzer (Roche Diagnostics, Basel, Switzerland)
and using Roche Diagnostics Kits according to the manufacturer's
instructions.

2.5. Plasma phospholipid fatty acid analysis

Fatty acid concentrations were determined by gas—liquid
chromatography (GC). Total lipids were extracted from the
plasma according to a method described by Milutinovic et al.,
2012 [18].

In short, the phospholipid fraction was isolated from the
extracted lipids by one-dimensional neutral lipid solvent using the
system of petroleum ether, diethyl ether and glacial acetic acid
(87:12:1, by volume) and separated on Silica Gel Chromatography
plates (C. Merck, Darmstadt, Germany). The phospholipid fraction
was scraped into glass tubes and the phospholipid fatty acid methyl
esters were prepared by transmethylation with sodium hydroxide
in methanol (heated at 85 °C for 1 h) and after that sulfuric acid in
methanol (heated 85 °C for 2 h). After 30 min, samples of esters
were centrifuged and the upper phase samples were put into tubes
and evaporated with technical grade nitrogen.

Fatty acid methyl ester derivatives were separated by gas
chromatography (GC) using a Shimadzu (Kyoto, Japan) GC 2014
equipped with a flame ionization detector and a Chronus GC-CN100
column (60 m x 0.32mmiD, film thickness 0.2 pm, SMI-Labhut,
Churcham, Gloucester, UK). Adequate separation was obtained
over a 50 min period with an initial temperature of 140 °C held for
5 min. The temperature was increased to 220 °C at a rate of
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3 °C min~! and held on final temperature for 20 min. Individual
peaks were identified by comparison with known standard mix-
tures (PUFA-2 and/or 37 FAMEs mix, Supelco, Bellefonte, PA), and
each peak was quantified by calculating the area under the peak.
Finally, the content of individual fatty acids was expressed as a
percent of total fatty acids identified.

2.6. Determination of plasma Zn concentrations

The analysis of plasma Zn was conducted at The Institute of
Public Health, Pozarevac, Serbia, using flame atomic absorption
spectrometry (AAS) on a Varian SpectrAA-10 instrument with in-
strument parameters: wavelength 213.9 nm, slit width 1.0 nm and
air-acetylene flame according to the method described by Jian Xin,
1990 [19]. The concentration of Zn was measured after dilution 1:10
with MilliQ water. To verify the accuracy of the method, the control
serum ClinChek-Control (Recipe, Chemical + Instruments Gmbh,
Germany) with a zinc content of 889 + 178 pg/l (Level I) and
1738 + 261 pg/l (Level II) was analyzed. Method performances were
monitored by the analysis of the same control serum within the
each series. The average obtained results for Zn content were
914 + 23 pg/l (Level I) and 1801 + 35 pg/l (Level II) which is in
accordance with the certified values. In order to avoid zinc
contamination, all tubes and utensils were either soaked in HNO3
(25%, w|w) for 16 h, or were known from previous studies to be
zinc-free.

2.7. Statistical analysis

Data analysis was done using the statistical package SPSS 22 for
Windows. All models were checked as to their appropriateness to
the data. Normality of the distributions was assessed by a Shapir-
o—Wilk test. Spearman's rank-correlation coefficients (r) adjusted
for sex, age, BMI, weight, height and energy intake were calculated
to determine correlations between fatty acid composition, plasma
Zn status and dietary Zn intake. Between-group differences in
variables were compared with unpaired t-tests or by Man-
n—Whitney U tests. Where variables were not normally distributed,
logarithmic transformation was undertaken to normalize the dis-
tribution. Data are presented as means + standard errors. p values
less than 0.05 were considered significant.

3. Results
3.1. General characteristics of study participants

The average age of participants (n = 54) was 40.4 + 7 years,
with average height of 173 cm + 7.8 and weight of 83 + 2.4 kg. The
average BMI of this group was 27.7 + 4.7 kg/m?, there were no
underweight individuals, 50% of participants were in the healthy
weight range and ~25% were obese, according to WHO criteria
[10].

3.2. Plasma Zn is not correlated with plasma concentrations of
other trace elements

Plasma Zn concentrations of our study participants ranged from
0.72 mg/1 to 1.37 mg/l. The overall mean plasma Zn concentration
was 1.04 + 0.16 mg/l (15.9 pmol/l).

All subjects had adequate plasma Zn concentrations (reference
range 0.7—1.6 mg/1) and no deficiencies were observed (no plasma
Znvalues <0.7 mg/l). Generally, the trace element concentrations in
this study (Table 1) were within the expected normal ranges for
healthy humans and similar to reported levels of trace element
concentrations in healthy individuals elsewhere [20—25].

Overall, trace element concentrations were not gender depen-
dent, there were no differences in the concentration of measured
nutrients between the male and female participants. No statisti-
cally significant difference in plasma Zn concentrations was seen
between the genders (p = 0.14) which is consistent with results of
several other studies [26,27]. The only statistically significant dif-
ference was observed for Cu, with females having higher mean
levels of Cu compared to males (1.0 + 0.03 and 0.78 + 0.02 corre-
spondingly; p < 0.00).

The observed difference in Cu levels is most likely due to the
higher estrogen levels in females. The average Zn: Cu ratio of
subjects in this study was 0.91 + 0.22 which demonstrates the
absence of Zn deficiency and inflammatory conditions in our study
population, since the increment of this ratio above 1.5 reflects an
inflammatory response or a decreased nutritional Zn status [28].
There were no correlations between the plasma Zn and other ele-
ments (Table 1). Similarly, the LA: DGLA ratio was correlated with
plasma Zn (r = —0.35, p = 0.01), without any association with Fe, Ca,
Cu and Mg, r = -0.12, p = 039; r = 0.16, p = 0.26; r = —-0.21,
p = 0.12; r = 0.78, p = 0.95, respectively.

3.3. Correlations of plasma Zn with anthropometric, hematological
and biochemical measures

Similarly to previous findings [26,29,30] in this study we have
not found a relationship between the zinc status and age (Table 2,
p = 0.87). Alike, no relationship (p = 0.2) was found between the
plasma zinc and BMI (Table 2). However, there was statistically
significant link between the weight (r = 0.27; p = 0.04), waist
circumference (r = 0.35, p = 0.01) and free-fat mass (r = 0.29;
p = 0.03) with plasma Zn (Table 2), as was also shown by others
[31-33].

Comparable to plasma Zn, the LA: DGLA ratio was correlated
with weight related parameters. The observed correlations were
stronger, waist circumference (r = —0.43; p = 0.001), hip circum-
ference (r = — 0.36, p = 0.008), weight (r = —0.35, p-0.008) and BMI
(r = 0.36, p = 0.007). We found a correlation between the plasma
Zn and glucose (r = 0.28, p = 0.04). There was no such correlation
between glucose and any other mineral measured (data not
shown).

In summary, except for weak correlations between Zn and
glucose and Zn and weight related parameters, we found no cor-
relation between the plasma Zn status and any other biochemical,
anthropometrical or hematological indicator measured (Table 2).

3.4. Dietary Zn intake. Plasma Zn is not correlated with dietary Zn
intake

Mean intake of zinc obtained from the 24 h dietary recalls was
9.98 + 0.86 mg/day (mean + SE). Around 30% of participants
consumed zinc at levels below the EAR (6.8 mg/day for women and
9.4 mg/day for men; [17]) and none of the study participants re-
ported taking Zn supplements. The meat, nuts and grain products
were the main sources of the dietary Zn intake of our study pop-
ulation. Additionally, good sources of dietary Zn presented cheese
products, yeast, sesame and poppy seeds, beans and cocoa powder.

Intakes of energy and protein in this study population were
1927 + 112 kcal/day and 75 g/day of protein. The ranked data show
significant correlations between the meat consumption (r = 0.49;
p = 0.00) and energy (r = 0.39, p = 0.003) with zinc intake. Among
the iron biochemical indices, hemoglobin and RBC were correlated
with dietary zinc intake (r = 0.36, p = 0.007; r = 0.35, p = 0.01
respectively). Similarly to other studies [16,34—37] this study
shows no significant relationship between the dietary and plasma
zinc status (r = 0.07; p = 0.6).
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Table 1

Plasma concentrations of Zn, Fe, Cu, Mg and Ca and their correlations.
Chemical Element Zinc (Zn) Iron (Fe) Copper (Cu) Magnesium (Mg) Calcium (Ca)
Concentration (mg/l) 1.04 + 0.22 1.25+0.11 0.94 + 0.28 21.28 + 0.26 101.7 + 2.92
Correlation with Zn (r) - 0.14 (0.33) 0.92 (0.51) 0.78 (0.58) 0.03 (0.85)

The values presented are means + standard errors (SE); n = 54, two replicates; r = correlation coefficient with p values in brackets. p < 0.05 is considered statistically
significant.

Table 2

Correlations of plasma Zn with anthropometrical, biochemical and hematological indicators.
Indicator Age Height (cm) Weight (kg) BMI (kg/m?) Hip Circ. (cm) Waist Circ. (cm)
Value 40.41 + 0.95 173.15+ 1.19 83.62 + 242 27.68 + 0.64 108.79 + 1.53 91.83 +1.73
Correlation with Zn 0.23 (0.87) 0.17 (0.21) 0.27 (0.04)* 0.21 (0.13) 0.18 (0.19) 0.35 (0.01)*
Indicator FF Mass (kg) HCT (L/L) Glu (mmol/L) Se (mm) Cho (mmol/L) TAG (mmol/L)
Value 52.26 + 1.47 0.41 + 0.01 4.93 + 0.07 7.85 +0.91 529 +0.14 1.02 + 0.05
Correlation with Zn 0.29 (0.03)* 0.02 (0.87) 0.28 (0.04)* 0.02 (0.86) —0.54 (0.69) 0.26 (0.05)
Indicator HDL (mmol/L) LDL (mmol/L) Cre (pmol/L) Urea (mmol/L) BILT (pmol/L) BILD (pmol/L)
Value 1.74 + 0.06 3.57 £ 0.13 6.96 + 1.73 3.43 +0.13 9.39 + 0.52 2.92 +0.14
Correlation with Zn —0.11 (0.45) —0.03 (0.81) 0.19 (0.16) 0.68 (0.63) 0.20 (0.15) 0.19 (0.16)
Indicator UA (pmol/L) ALT (U/L) AST (U/L) Gamma GT (U/L) LDH (U/L) Hgb (g/L)
Value 263.16 + 10.07 26.25 + 2.19 2249 + 1.20 1543 + 1.18 153.19 + 4.64 135.50 + 1.93
Correlation with Zn 0.24 (0.08) 0.15 (0.27) 0.19 (0.16) 0.22 (0.11) 0.26 (0.06) —0.02 (0.98)
Indicator WBC x 10°/L RBC x 10'%/L PLT x 10°/L Lym (%) Mon (%) Gra (%)
Value 578 +0.18 4.69 + 0.06 253.05 £ 7.26 34.26 + 0.80 6.40 + 0.31 59.34 + 0.84
Correlation with Zn 0.19 (0.16) 0.12 (0.39) 0.11 (0.45) —-0.17 (0.21) 0.06 (0.65) 0.15 (0.27)

BMI — body mass index; Circ. — circumference; FF — free fat; HCT — hematocrit; Glu — glucose; Se — sedimentation; Cho — cholesterol; TAG — triglyceride; HDL — high density
lipoprotein; LDL — low density lipoprotein; Cre — creatinine; BILT — bilirubin total; BILD — bilirubin direct; UA -urine analysis; ALT — alanine aminotransferase; AST — aspartate
aminotransferase; Gamma GT — Gamma-glutamyl transpeptidase; LDH — lactate dehydrogenase; Hgb-hemoglobin; WBC — white blood cells; RBC — red blood cells; HCT —
hematocrit; PLT — platelet count; Lym — lymphocytes; Mon — Monocytes; Gra — Granulocytes. Values presented are means + SE (standard errors). r- Correlation coefficient

with p values in brackets. *p < 0.05 is considered statistically significant.

3.5. Correlations of plasma zinc with fatty acids. LA: DGLA is
correlated with plasma Zn status in healthy subjects

The mean plasma fatty acid values of our study population are
similar to the average serum/plasma fatty acid composition
described by others [38—41].

Dietary Zn intake was mainly not correlated with different fatty
acids measured in this study, the exception is the 22:5n-3, the end
product of metabolic pathway of alpha linolenic acid. Plasma Zn
status was not related to the status of SFA or MUFA and most of the
PUFA. However, as presented in Table 3, there is statistically sig-
nificant correlation between the DGLA and plasma Zn (r = 0.39,
p = 0.00). No relation was observed between the linoleic acid and
plasma Zn status while there was a significant negative correlation
between LA: DGLA ratio and plasma Zn status (r = — 0.35, p = 0.01).

Out of all fatty acids measured in this study DGLA was the only one
that shows significant association with plasma Zn status. Multiple
regression analysis (controlled for confounders) revealed that di-
etary and plasma Zn can predict changes in the LA/DGLA ratio
(R? = 0.23 F[6,47] = 2.39, p = 0.042).

3.6. LA: DGLA ratio responds to the changes in dietary Zn intake
while plasma Zn does not

In order to test the proposition that LA: DGLA is responsive to
dietary Zn manipulations we divided samples into two groups
with statistically significant differences in dietary Zn intake
(Table 4).

We examined the extent the differences in the plasma Zn status,
dietary intake of fatty acids and alterations in the concentrations of

Table 3
Correlations of major plasma phospholipid fatty acids content with plasma Zn status and dietary Zn intake.

Fatty acids Common name Content (%) Correlation with plasma Zn status Correlation with dietary Zn intake

SFA Palmitic acid (16:0) 30.13 + 0.26 —0.81 (0.56) —0.04 (0.77)
Stearic acid (18:0) 16.69 + 0.18 —0.12 (0.43) —-0.23 (0.09)

MUFA Palmitoleic acid (16:1n-7) 0.58 + 0.03 0.12 (0.42) 0.68 (0.63)
Cis-vaccenic acid (18:1n-7) 2.51 + 0.07 —2.38(0.08) 0.12 (0.40)
Oleic acid (18:1n-9) 7.83 +0.14 0.23 (0.97) 0.06 (0.66)

PUFA Linoleic acid (LA; 18:2n-6) 24.07 + 0.37 0.01 (0.93) 0.08 (0.55)
Dihomo-gamma-linolenic acid (DGLA, 20:3n-6) 2.88 +0.09 0.39 (0.00)* 0.04 (0.75)
Arachidonic acid (AA, 20:4n-6) 11.17 £ 0.27 —0.05 (0.69) 0.06 (0.67)
Adrenic acid (22:4n-6) 0.43 + 0.02 0.06 (0.67) 0.05 (0.69)
Docosapentaenoic acid (22:5n-3) 0.56 + 0.03 —0.15 (0.26) 0.30 (0.03)*
Docosahexaenoic acid (22:6n-3) 2.82 +0.12 0.01 (0.98) 0.05 (0.73)
Eicosapentaenoic acid (20:5n-3) 0.32 + 0.02 —0.98 (0.48) 0.17 (0.20)
n-6: n-3 1139 + 0.49 0.01 (0.98) —-0.11 (0.45)
LA: DGLA 8.87 +0.33 —0.35(0.01)"* —0.01 (0.94)

FA — fatty acid; SFA — saturated fatty acid; MUFA — mono-unsaturated fatty acid; PUFA — poly-unsaturated fatty acid. Values presented are means + SE (standard errors) of the
% of total fatty acids. r- Correlation coefficient with p values in brackets.
*p < 0.05 is considered statistically significant.

2 Correlations are calculated controlling for age, sex, BMI, energy intake and dietary Zn intake.
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LA and DGLA (individually), as well as, LA: DGLA ratio follow the
pattern of statistically significant differences in the dietary Zn
intake among the groups.

Except for the statistically significant difference in intake of meat
(p = 0.015) there were no statistically important dissimilarities in the
consumption of any other food items that contributes to Zn intake
(i.e. seafood, grain, vegetables, fruits, nuts). Similarly, no statistically
significant variance was seen in dietary Fe intake (p = 0.85).
Furthermore, there were no statistically significant differences be-
tween the zinc groups for any of the trace elements measured (data
not presented). Finally, no dissimilarities were observed for any of
the biochemical parameters between the groups.

For anthropometrical measures there were variations in % fat
(p=0.03) and fat free mass (p = 0.001) between participants in two
groups, but no differences were seen for BMI (p = 0.71). Hemo-
globin (p = 0.03) and red blood cells (p = 0.01) were the only two
hematological parameters with statistically significant differences.
No dissimilarities were seen in the dietary intake of LA or PUFA
between the groups. Plasma Zn did not reflect changes in the di-
etary Zn intake, so no statistically significant variances were seen in
plasma Zn concentrations among the groups.

On the contrary, there was statistically significant difference in
DGLA status (p = 0.004) and LA: DGLA ratio (p = 0.042) between
the groups (Table 4). The effect size, Cohen's d for LA: DGLA ratio
was 0.58, which demonstrates the medium size effect. Considering
other fatty acids, generally there were no variations observed be-
tween the Zn groups. The exceptions are the 22:4 n-6 (adrenic acid)
and 18:1n-9 (oleic acid) with statistically significant differences
0.39 + 0.02 and 0.47 + 0.03, mean + SE, p =0.014 and 7.5 + 0.16 and
8.12 + 0.21, p = 0.03, respectively.

4. Discussion

This study is an initial step in the evaluation of LA: DGLA ratio as
a biomarker of Zn status in humans. Our findings demonstrate that
while plasma Zn concentrations remain stable the LA: DGLA ratio
responds to dietary Zn intake; the concentration of DGLA is
decreased and LA: DGLA ratio is increased in people with lower
dietary Zn intake.

It is generally accepted that plasma Zn concentration is a valid
indicator of whole-body Zn status in the absence of confounding
factors, such as infection or stress [4,8]. However, as shown by
many [34,35,37,42] plasma Zn level is not reflecting the nutritional
state and dietary Zn intake of an individual faithfully. This clearly
means that we need a new biomarker that responds more effec-
tively to alterations in dietary Zn intake. The aim of this study was
to test if the changes in recently proposed biomarker of Zn status
(LA: DGLA ratio) can successfully predict dietary Zn intake and Zn
status of an individual.

In this study plasma Zn, rather than serum was measured, in
order to avoid contamination of zinc from the erythrocytes. Blood
was collected in accordance with the standard protocol suggested
by the International Zinc Nutrition Consultative Group [43]. Fatty

Table 4

acids in plasma/serum phospholipids stored at —80 °C for 7—12
years showed minimal degradation over time [44]. In order to avoid
variations in Zn concentrations caused by the time of the day when
the blood was taken and the time since last meal, in this study the
blood was taken in the morning (between 8 and 9 a.m.) and after an
overnight fast (>10hr).

The trace element concentrations in this study were within the
anticipated normal ranges for healthy humans reported elsewhere
[20—25]. There were no correlation of plasma Zn with any other
trace elements measured in this study, which is consistent with
previous findings [45,46].

Strict inclusion/exclusion criteria was used in order to exclude
participants with infections, inflammatory conditions and al-
lergies. In addition, we looked at the Cu: Zn to show the overall
health status of participants. The ratio of copper to zinc (Cu: Zn) is
believed to be clinically more important than the individual con-
centrations of either of these trace metals. Cu: Zn ratio is often
used to show the general health state of an individual, as it is easily
affected by inflammatory parameters [28]. Numerous studies have
shown that the serum Cu: Zn ratio is a sensitive indicator for the
identification of various diseases [22,47,48]. It has also been pro-
posed that the ratio of these metals can be used as reference in-
formation for diagnosing zinc deficiency [42,49]. The optimal
plasma or serum Cu: Zn ratio is 0.70—1.00 [28]. The increment of
this ratio above 1.5 reflects an inflammatory response or a
decreased nutritional Zn status [28]. The average Cu: Zn ratio of
subjects in this study was 0.91 (reference range 0.7—1) which in-
dicates the absence of Zn deficiency and inflammatory conditions
in our study population.

All values obtained for various biochemical and hematological
parameters measured in this study fall within the reference
ranges for healthy population subjects [50—52]. The correlation of
plasma Zn with various biochemical, anthropometrical and he-
matological parameters in healthy population subjects has not
been investigated widely. The researchers were mainly interested
in following the changes of these parameters and Zn status as a
consequence of certain diseases (liver disease, diabetes, cardio-
vascular disease, various tumors). In general, no correlations were
seen between the Zn status and biochemical, anthropometrical or
hematological indicators measured in this study. The exemption is
the weak correlation between the plasma Zn and glucose and Zn
and weight related parameters. Zinc is known to have an insulin
like effect and is required for the synthesis and release of insulin
from pancreatic f cells [53,54]. Zinc ions have also been shown to
suppress protein tyrosine phosphatases associated with the in-
sulin signaling cascade [55] thus activating the insulin signaling
cascade resulting in glucose uptake, which explains the observed
correlation.

Our results are in agreement with previous findings, no rela-
tionship was found between the lipid profile (TAG, CHO, HDL, LDL)
and plasma Zn concentrations [32,33].

The assessment of dietary Zn intake confirmed that zinc is ob-
tained from a wide range of foods, the richest sources include red

Differences in the dietary content and plasma concentrations of LA, DGLA and Zn between the two Zn groups.

Group 1 (n = 27)

Group 2 (n = 27) Significance (2-tailed)

Dietary Zn (mg) 7.01 + 0.52
Dietary LA (g) 17.54 + 3.54
Dietary PUFA (g) 12.61 + 2.86
Plasma Zn (mg/L) 1.02 + 0.03
LA (%) 24.01 + 049
DGLA (%) 2,61 +0.12
LA/DGLA 9.53 + 043

12.78 £ 1.54 0.001*
19.75 + 2.78 0.650
1215+ 2.17 0.755
1.07 + 0.03 0.283
2415 + 0.54 0.528
3.14+0.14 0.004*
8.21 + 0.47 0.040*

Dietary Zn—Zn content of the diets based on three 24 h recall questionnaires n = 54; 27 in each of the group. LA — linoleic acid; DGLA — dihomo-gamma-linolenic
acid; PUFA — poly-unsaturated fatty acid. Values presented are means =+ SE (standard errors). *p < 0.05 is considered statistically significant.
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meats and liver, nuts, seeds and grains. The red meat and grain
products were the main sources of the dietary Zn intake of our
study population. Moderate sources included whole grain cereals,
and legumes, with lower quantities being taken from other vege-
tables, fruits, and refined cereals. Zinc in animal products is more
readily absorbed than from plant foods. Cereal grains, legumes, and
nuts are rich in phytate, which binds zinc in the intestine and re-
duces its absorption [6]. The molar ratio of phytate: zinc in the diet
has been proposed as a predictor of zinc bioavailability, and ratios
>15 have been associated with suboptimal zinc status [6,56]. One of
the limitations of the present study is the lack of information on the
intake of phytate. However, in an omnivorous population, the
impact of phytate is likely to be less significant than expected in
vegetarians and those whose diets are mainly based on plant foods.
Similarly, according to recently developed calculator for inadequate
micronutrient intake, Zn bioavailability from the diets consumed by
our study population belong to the group of ‘high Zn bioavail-
ability’, where <50% of total energy intake is accounted for from
rice, other grains, other starchy staples, and pulses and nuts (38% in
our population) and >5% (15% in our study population) of total
energy intake is accounted for by protein from fish, eggs, dairy and
meat [57].

Dietary Zn intake has not been correlated with plasma zinc
status which has also previously been demonstrated by others
[34,35,37]. Due to the effective homeostatic regulation, plasma Zn
does not reflect realistically dietary Zn intake and nutritional state
of an individual. Unchanged plasma/serum Zn concentrations were
observed with the intakes as low as 2.8 mg/kg to as much as 40 mg/
kg, showing the limitation of plasma Zn status to reliably present
the dietary Zn intake [16,58].

In addition, it is not unusual that the plasma zinc level falls at
the lower end of the normal range even in the presence of zinc
deficiency [42]. In this study we have participants with Zn intakes
below the estimated average requirements for Zn [17] (around 30%)
and still their plasma Zn levels remain stable (within the reference
ranges). This finding, once again proves that plasma Zn is able to
show relatively large variations in zinc status, but is not sensitive
enough to reveal the early changes in Zn status or the changes in
and between the deficient states. Mild to moderate Zn deficiency is
not usually presented with specific organ pathologies [59], and
basing the determination of Zn status solely on plasma Zn con-
centrations, early Zn deficiency states easily remain undiagnosed.
The better biomarker of Zn status is undoubtedly needed.

The role of Zn in fatty acid metabolism has been demonstrated
in several ways [60,61]. Zinc modulates cyclooxy-genase activity
[62] and it is a co-enzyme for delta desaturase [63,64]. As desa-
turase enzymes require zinc and have a relatively low binding
constant their activity is quite sensitive to early stage zinc defi-
ciency. Zn deficiency leads to inconsistencies in the ratio of desa-
turase substrates and products, in this case linoleic acid (LA) and
dihomo-y-linolenic acid (DGLA) respectively [63]. The delta 6-
catalyzed step required for conversion of LA to DGLA is usually
the highest flux pathway, so an elevation in the LA: DGLA ratio may
be a sensitive marker for Zn deficiency [9].

This study is an initial step in examining the LA: DGLA ratio as a
biomarker of Zn status in humans. In addition to this, we looked at
the correlation of plasma Zn and dietary Zn intake with other
polyunsaturated, as well as some, saturated and monounsaturated
fatty acids.

Out of the twelve fatty acids examined plasma Zn was correlated
with only one polyunsaturated acid, DGLA.

Comparison of the differences in fatty acid content among the
groups with different dietary Zn intake demonstrate that the con-
centration of oleic acid (18:1n-9; delta 9 desaturase product) and
adrenic acid (22:4n-6; delta 5 desaturase) was lower in the group of

people with lower Zn intake. Similar findings were provided by
others [60,65,66]. The lower concentrations of oleic and adrenic
acid in the group with lower dietary Zn intake indicate that Zn may
have a role to play in desaturase activity.

We found no statistically important dissimilarities in the con-
sumption of any other food items that contributes to Zn intake (i.e.
seafood, grain, vegetables, fruits, nuts) among the investigated
groups. The changes in fatty acid composition that are caused by
food restrictions are different from the changes caused by Zn
deficiency [67,68]. For example Kudo et al., 1990, demonstrated that
during Zn deficiency oleic acid is reduced but increased during food
restrictions. Analogous findings were provided by Cunnane et al.,
2005. The authors state that the inhibition of the desaturases by
zinc deficiency is so strong that it causes a more rapid decline in
tissue arachidonic acid and docosahexaenoic acid than does the
direct dietary deficiency of all the omega 6 or omega 3 poly-
unsaturated fatty acids.

Our results suggest that the activities of delta 6 and delta 9
desaturase are reduced when lower intake of dietary Zn is present,
which confirms the sensitivity of desaturases to Zn intake. Desa-
turase enzymes are coupled to the NAD (P) H-cytochrome b5
electron transferrin chain and lower dietary Zn intake most likely
affects the electron transferring chain and subsequently changes
the activities of desaturases [68].

In addition to zinc, iron has also been shown to inhibit delta 9
desaturase activity [68]. Iron is a structural component of the
desaturase enzymes, which are required to add double bonds to
long chain fatty acids. Besides the changes in the concentrations of
oleic acid between the Zn groups, there were also statistically sig-
nificant differences in hemoglobin and RBC status. The new find-
ings propose that dietary Zn intake is having a role to play in Fe
deficiency [69,70], so the observed changes in the production of
oleic acid may mean that Zn is also indirectly controlling the ac-
tivity of iron ions. In further support to this argument, it is inter-
esting to note that while there was no relationship between the
dietary Zn intake and plasma Zn status, dietary Zn intake correlated
with iron indices, hemoglobin and red blood cell count. Zn is shown
to be a strong predictor of hemoglobin concentrations [59,71].
Additionally, a number of data sets over the years, have clearly
shown a positive correlation between anemia and signs of the risk
of Zn deficiency in adult males, children, and pregnant women
[72,73]. The negative interaction between iron and zinc for ab-
sorption has been forgotten. There is more and more evidence
showing the positive link between Fe and Zn and a strong positive
influence of Zn on Fe absorption and Fe status. The information on
the precise mechanisms of Zn involvement in the Fe absorption
processes is accumulating [69,70,74].

There is a possibility that other confounding variables may not
have been controlled for in our analysis and this suggests that our
estimate of the effect of dietary zinc on changes in the LA: DGLA
may be subject to some residual confounding. Nevertheless, given
that the most important dietary (energy, fat and protein intake) and
non-dietary confounders (sex, age, BMI) have been controlled for
this outstanding confounding is likely to be very small.

In summary, our study results show that LA: DGLA ratio changes
in accordance to dietary Zn intake. Similar findings were provided
by Reed et al. scientists who were first to propose that LA: DGLA can
potentially be used as a new biomarker of Zn status. With their
chicken model the authors illustrate that LA: DGLA is sensitive to
changes in dietary Zn intake, and that the biomarker can be used to
assess the outcomes of changing levels of dietary Zn rapidly [9].

While plasma Zn concentrations of our study population
remained unchanged (most likely due to the good homeostatic
regulation) there was a statistically significant difference in DGLA
production and the LA: DGLA ratio between the groups of subjects
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with statistically different dietary Zn intake. The effect size of this
difference shows that the observed variation is of moderate effect
size. Finally, the percentages of adrenic acid (22:4n-6) the main end
product of linoleic acid and oleic acid (18:1n-9) the end product of
stearic acid were clearly different between the corresponding di-
etary Zn groups, which supports the idea that dietary Zn deficiency
can affect the chain elongation/desaturation pathway of essential
fatty acids [9,63].

This study is an initial step in evaluating LA: DGLA ratio as a
biomarker of Zn status in humans. Indeed, further studies and di-
etary intervention trials are needed to entirely describe the effec-
tiveness of this biomarker in relation to zinc status and zinc
bioavailability over time. The initial results are encouraging as they
show that LA: DGLA ratio changes in accordance to dietary Zn
intake in humans. However, additional studies are needed to
examine the sensitivity of this biomarker in different setting: in
larger study populations, in Zn deficient populations, as well as in
the treatment groups with various levels of zinc deficiency. Addi-
tional work is needed to clarify any potential limitations of this
biomarker, i.e. the effect of inflammatory conditions and infections
states on this biomarker.

The usefulness of LA: DGLA ratio in reflecting the Zn status of an
individual should further be examined by looking at the changes of
this biomarker during different time frames (long vs. short low/
high Zn intake). The kinetics of desaturase enzymes in humans
should also be examined. Similarly, the changes in LA: DGLA ratio
may be investigated in relation to the alterations of Zn depended
proteins and genes in various tissues (i.e. ZnT1, Zip4).

5. Conclusion

This study investigated the correlation of the newly proposed
biomarker of Zn status, LA:DGLA ratio, with plasma Zn status and
dietary Zn intake in healthy human subjects.

In addition, the correlations of Zn related indices with fatty acids
and various biochemical, anthropometrical and hematological pa-
rameters were investigated. This initial study confirms that LA:
DGLA ratio responds to dietary Zn manipulations. The study pro-
vided new information related to the link between plasma Zn, fatty
acid status and dietary Zn intake. In conclusion, additional dietary
intervention trials are needed to investigate the efficacy of
newfangled biomarker of Zn status fully.
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