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SUZANA BLESIĆ, DAVIDE ZANCHETTIN, AND ANGELO RUBINO

Department of Environmental Sciences, Informatics and Statistics, Ca’Foscari University of Venice,

Mestre-Venice, Italy

(Manuscript received 5 December 2017, in final form 1 November 2018)

ABSTRACT

We investigated the scaling properties of two datasets of the observed near-surface global temperature data

anomalies: theMet Office and the University of East Anglia Climatic ResearchUnit HadCRUT4 dataset and

the NASA GISS Land–Ocean Temperature Index (LOTI) dataset. We used detrended fluctuation analysis

of second-order (DFA2) and wavelet-based spectral (WTS) analysis to investigate and quantify the global

pattern of scaling in two datasets and to better understand cyclic behavior as a possible underlying cause of the

observed forms of scaling. We found that, excluding polar and parts of subpolar regions because of their

substantial data inhomogeneity, the global temperature pattern is long-range autocorrelated. Our results

show a remarkable heterogeneity in the long-range dynamics of the global temperature anomalies in both

datasets. This finding is in agreement with previous studies. We additionally studied the DFA2 and the WTS

behavior of the local station temperature anomalies and satellite-based temperature estimates and found that

the observed diversity of global scaling can be attributed both to the intrinsic variability of data and to the

methodology-induced variations that arise from deriving the global temperature gridded data from the

original local sources. Finally, we found differences in global temperature scaling patterns of the two datasets

and showed instances where spurious scaling is introduced in the global datasets through a spatial infilling

procedure or the optimization of integrated satellite records.

1. Introduction

Global near-surface air temperature databases are

standardly derived from long-term instrumental tem-

perature measurements and are offered for public use to

document and help understand historical and ongoing

climate variations and change (Karl et al. 1993). The

three most prominent groups that produce such data-

bases are the NASAGoddard Institute for Space Studies

(GISS), the NOAA/National Centers for Environmental

Information [NCEI; formerly the National Climatic Data

Center (NCDC)], and a joint effort of the Met Office

Hadley Centre and the University of East Anglia Cli-

matic Research Unit (with the corresponding dataset

HadCRUT; Hansen et al. 2010; Morice et al. 2012; Smith

et al. 2008). Input observations to these datasets are largely

drawn from the same sources: the World Meteorological

Organization (WMO) and Global Climate Observation

System (GCOS) initiatives provide the bulk of the land

station data (Morice et al. 2012; Jones et al. 2012),

while the InternationalComprehensiveOcean–Atmosphere

Dataset (ICOADS), a compilation of meteorological re-

cords collected by ships and drifting and tethered

buoys, is the main source of the ground ocean data

(Morice et al. 2012; Freeman et al. 2017). All the ob-

servational data are typically updatedmonthly (Morice

et al. 2012). Despite their common sources of obser-

vational data, the datasets largely differ in how they

handle issues such as incomplete spatial and temporal

coverage or nonclimatic influences on a measurement

station’s environment (Hansen et al. 2010; Morice

et al. 2012). Further, methodological differences in

the construction of datasets include usage or lack

thereof of spatial infilling (Hansen et al. 2010), in-

corporation of satellite measurements (Reynolds

et al. 2002), and estimation of near-surface air tem-

perature above sea ice (Smith et al. 2008; Hansen et al.

2010). Finally, all prominent global temperature da-

tasets are given in the form of temperature anomalies,

calculated against different climatological reference
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periods, with different resolutions of spatial averaging

and interpolation (i.e., with different sizes of corre-

sponding grid elements; Hansen et al. 2010; Morice et al.

2012; Smith et al. 2008).

Comparative assessments of these datasets indicate

their consistency regarding certain components of tem-

perature variability, such as hemispheric or global trends

(Hansen et al. 2010).However, a reliable quantification of

consistency lacks the estimation of uncertainty in the

long-range spatial and temporal temperature charac-

teristics, originated by both intrinsic variability of data

and the structural differences between the datasets. In

this regard, scaling properties are known to charac-

terize correlated randomness (Stanley 2005) that per-

sists over a wide range of time scales. In this paper, we

investigate scaling properties of the two main global

temperature datasets: the current versions of the

HadCRUT (HadCRUT4) and NASA GISS Land–

Ocean Temperature Index (LOTI). By calculating power-

law exponents of appropriately prepared statistical

functions that describe the gridded monthly data time

series, we determine the existence and forms of global

patterns of the observed near-surface air tempera-

ture stochastic variability and assess the influence of

structural uncertainties that arise from the choice of a

particular dataset preparation methodology on the

quantification of the long-range spatial and temporal

order of the data.

The role of stochasticity in climate state and vari-

ability has been extensively studied since the initial ap-

plication of present-day scaling techniques in statistical

hydrology (Hurst 1951; Mandelbrot 2001). Specifically,

it was determined that observational and derived re-

gional and global temperature data show strong natural

long-term persistence. It can be described by the auto-

correlation function C(s) that decays by a power law of

the separation time lag s (Tamazian et al. 2015; Carvalho

et al. 2007; Tsonis et al. 1999, 2003) in such a way that the

mean correlation time for infinitely long records di-

verges (a criterion for a long-term persistence, a long-

range order, or a long-range memory). In this paper, we

presume scaling to be a sign of the existence of such a

long-range (correlated) order in data; for a critical dis-

cussion of this approach and alternative explanations,

we refer to studies referenced by Kantelhardt et al.

(2006). The existence of spatial heterogeneity in tem-

perature long-range behavior was reported in systematic

studies of persistence and trends in land station records

(e.g., Bunde and Havlin 2002; Eichner et al. 2003;

Govindan et al. 2003; Alvarez-Ramirez et al. 2008a;

Ludescher et al. 2016) and, to a certain extent, in pre-

vious versions of the HadCRUT (i.e., HadCRUT2)

gridded data as well (see Fraedrich and Blender 2003;

Bunde et al. 2004; Fraedrich and Blender 2004). We aim

to add to this body of knowledge by extending scaling

analysis to consider the global average temperatures and

the corresponding spatially resolved gridded data, in

order to calculate complete gridded patterns of global

temperature scaling for the two prominent datasets and

their corresponding spatially resolved data. The impli-

cations of scaling in global temperature data encompass

the choice of the appropriate null hypothesis for the

statistical characterization of natural variability in de-

tection and attribution studies (Koutsoyiannis 2003;

Zorita et al. 2008; Lennartz and Bunde 2009, 2011;

Markonis and Koutsoyiannis 2013; Varotsos et al. 2014;

Tamazian et al. 2015; Ludescher et al. 2017) and the

design of reliable statistical climate model alternatives

(Ashkenazy et al. 2003; Tsonis and Roebber 2004;

Berezin et al. 2012; Franzke et al. 2015), along with a

contribution to understanding the complexity of tem-

perature records’ fluctuations (Mandelbrot and Wallis

1968; Stanley 2000).

In this paper, scaling properties of global temperature

data are described through the scaling (or Hurst) ex-

ponent a of each temperature gridpoint time series. To

determine a, we used second-order detrended fluctua-

tion analysis (DFA2; see, e.g., Kantelhardt et al. 2001),

where linear trends in the data are systematically re-

moved. We used DFA2 in combination with the wavelet

transform (WT) power spectral analysis to confirm the

DFA2 results by determining the scaling exponent b of

the wavelet power spectra (Blesić et al. 2003; Bashan

et al. 2008). In addition, we used the wavelet transform

power spectrum (WTS) to provide insight into the ex-

istence, positions, and amplitudes of significant periodic

or nonperiodic cycles in the data (Sarvan et al. 2017;

Stratimirović et al. 2018). To this end, we used Morlet

wavelets of the sixth order as a wavelet basis for our

analysis. The Morlet wavelets have been proven to

possess the optimal joint time–frequency localization

(Goupillaud et al. 1984; Torrence and Compo 1998) and

can thus be effectively used to detect locations and

spatial distribution of singularities in time series (Mallat

and Hwang 1992; Zanchettin et al. 2008). We calculated

the scaling exponents a for all the available gridpoint

data of the two datasets, without restrictions regarding

the amount of missing data. The purposes of this ap-

proach were to obtain global spatial pattern(s) of scal-

ing, to examine its differences and similarities for two

databases, to identify dissimilarities that stem from in-

homogeneities due to data management (Karl et al.

1993; Peterson et al. 1998; von Storch et al. 2012), and to

test the robustness of our methods against data non-

uniformity (Hu et al. 2001; Chen et al. 2002; Rust et al.

2008). Our results may be compared with other methods

350 JOURNAL OF CL IMATE VOLUME 32

Unauthenticated | Downloaded 03/27/21 07:08 PM UTC



of data analysis, such as the Fourier transform power

spectral analysis or the calculation of the autocorrela-

tion function, through direct dependence (Talkner and

Weber 2000; Höll and Kantz 2015) and scaling relations

given below. Finally, our approach did not hypothesize

any particular underlying physical process as a source of

scaling. It can nevertheless be compared to the outputs

of approaches based on other functional forms and/or

specific model assumptions, such as with the structure

functions analysis based on the concept of scale in-

variance in turbulence (Schertzer and Lovejoy 1987,

1990; Talkner and Weber 2000; Lovejoy and Schertzer

2013); for the comprehensive assessment of links of

structure function analysis to DFA, please see Talkner

and Weber (2000) and Kantelhardt et al. (2006).

Our paper is structured as follows. In section 2, we

give a brief overview of the sources of data and of the

general methodological framework of the DFA and the

WTS analysis. In section 3, we present the results of

the usage of DFA2 and WTS to study scaling properties

of the HadCRUT4 andNASAGISS LOTI datasets. This

includes our findings that concern possible sources of

the observed anti-autocorrelated (with scaling exponents

a, 0:5) and highly autocorrelated (with a. 1) behavior

in some of theHadCRUT4 grid cells and the results of the

use of DFA2 and WTS to understand the observed dif-

ferences in scaling between HadCRUT4 and NASA

GISS LOTI. We end our paper with a list of conclusions

and a few suggestions for future work in section 4.

2. Data and methods

a. Data

We used the NASA GISS LOTI gridded monthly

temperature anomalies data available on the GISS

Surface Temperature Analysis (GISTEMP) website

(GISTEMP Team 2017). We used the LOTI data de-

rived from the analysis that combines the Extended

Reconstructed Sea Surface Temperature (ERSST) ver-

sion 4 (Huang et al. 2015; Liu 2012; Huang et al. 2016)

dataset with optimum interpolation (OI) of the satellite

data and with 1200-km spatial smoothing for insufficient

coverage (Hansen et al. 2010). In GISTEMP, the grid

boxes are 28 latitude3 28 longitude.We also used theMet

Office Hadley Centre observational gridded dataset

HadCRUT4, which provides median temperature anom-

alies from the 100 ensemble members in each grid box

(Morice et al. 2012), available on the Met Office website

(MetOfficeHadleyCentre 2010). InHadCRUT4, the grid

boxes are 58 latitude3 58 longitude. For parts of our anal-
ysis that compare results obtained within particular grid

elementswith thoseobtainedusing the sourceobservational

data of the same grid cell, we used land station data

provided by Google Earth for the HadCRUT4 land

temperature dataset CRUTEM4 (Jones et al. 2012;

Osborn and Jones 2014; CRUTEM4 Team 2017)

and the NCDC Global Historical Climatology Net-

work (GHCN; version 3) land station monthly data

(Lawrimore et al. 2011; GHCNTeam 2017). To compare

our results for the gridded data withmarine observations,

we considered the ICOADS version 2.5 time series pro-

vided by the Royal Netherlands Meteorological Insti-

tute (KNMI) Climate Explorer web application (KNMI

Team 2017). Whenever possible, we used both unad-

justed and adjusted land station or marine measure-

ments to account for the effects of data homogenization

(Rust et al. 2008). Finally, as a source of satellite tem-

perature measurements, we used the University of Ala-

bama in Huntsville (UAH) satellite temperature analysis

(Christy et al. 2003; Christy and Spencer 2017) in com-

bination with the NCEI OI sea surface temperature

(OISST; Banzon et al. 2016; Reynolds et al. 2007; OISST

Team 2017); in UAH, the grid boxes are 2.58 latitude 3
2.58 longitude, while the OISST dataset has a resolution

of 18 latitude 3 18 longitude. An overview of our data

sources is given in Table 1.

Whenever the time series were given in absolute

temperatures, and in order to correctly compare their

DFA2 and WTS results with the corresponding outputs

of HadCRUT4 and NASA GISS LOTI time series, we

used conventional deseasoning to define their anomaly

time series. In these instances, the seasonal means for

the entire record, instead of for the particular reference

period, have been removed (Livina et al. 2011; Torrence

and Compo 1998). In this paper, we refer to such de-

seasoned records as the ‘‘raw data.’’ This method of

seasonal detrending has been proven appropriate for the

purpose and design of our study [i.e., the assessment of

(monofractal) scaling and consistency of cycles in data;

Livina et al. 2011; Ludescher et al. 2011; Bunde et al.

2013a]; it dampens the amplitude of the annual cycle in

the amount sufficient to enable the assessment of un-

derlying long-term correlation properties. If the original

absolute temperature date were used, this would lead

to a remarkable change in DFA2 results; in the range of

scales of interest to this paper, the seasonal trend will

dominate DFA2 (and WTS) behavior in such a pro-

found way that the estimation of scaling will be

impossible, and DFA2 functions will be almost in-

distinguishable for different observational records

(Hu et al. 2001).

b. Methodology

We used the DFA and the WTS approaches for data

analysis. DFA was introduced as an appropriate scaling
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analysis to deal with nonstationary records that

contain some trends of unknown form (Peng et al.

1994). In DFA, the procedure of detrending was de-

vised so as to eliminate such trends. The resulting

remarkable performance of this method in data

analysis critically stems from this highly effective

detrending solution, as shown by numerous system-

atic studies that investigate the effects of trends, non-

stationarities, and nonlinearities (Hu et al. 2001; Chen

et al. 2002, 2005), as well as the effects of extreme data

loss (Ma et al. 2010) on the DFA function form, and

compare DFA with other detrending methods (Xu

et al. 2005; Bashan et al. 2008) or other independent

methods of data analysis (Alvarez-Ramirez et al. 2008b;

Rodriguez et al. 2014). Recently, a new mathematical in-

sight further illuminated how DFA operates on non-

stationary data series with nonstationarity due to their

intrinsic dynamics (Höll et al. 2016).
We applied the version of DFA (Peng et al. 1994) that

utilizes the detrending procedure on a set of overlapping

segments (Buldyrev et al. 1995) of a time series of du-

ration (number of data points) N, which is described

in detail in Blesić et al. (1999) and Milo�sević et al.

(2002). In this version of DFA, any time series A(k)

(k5 1, . . . , N) is first transformed into a series of its

partial (or cumulative) sums y(l)5�l

k51[A(k)2Aave],

whereAave 5 (1/N)�N

k51A(k). For any given overlapping

segment of length n of y(l), yn,i(l) (i5 1, . . . , N2 n1 1),

the procedure of detrending is applied: the local trend is

calculated through a polynomial least squares fit

(Kantelhardt et al. 2001) and subtracted from yn,i(l). The

polynomial degree that defines the local trend represents

the DFA order; in our case, it is two (i.e., we used a qua-

dratic function). Finally, the average of variances about the

local trend obtained over all segments is calculated (Peng

et al. 1994), thereby producing the detrended fluctuation

function:

F(n)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

(N2 n1 1)l
�

N2n11

i51
�
n

l51

[y
n,i
(l)]2

s
. (1)

The function F(n) increases with the segment length n

(Blesić et al. 1999). If (any) A(k) is short-range auto-

correlated or has no correlations at all, F(n) behaves as

n1/2 (Peng et al. 1994). For data with power-law long-

range autocorrelations, the expectation is that F(n); na,

with a 6¼ 0:5. We call the data long-range autocorrelated,

or long-term persistent (LTP), when the corresponding

autocorrelation function C(s) decays by a power law

C(s); s2g for s. 0 and N/‘. If this is the case,

g represents the correlation exponent that quantifies the

nature and the level of autocorrelations in the record; for

stationary cases, g lies in the range 0, g, 1. Correla-

tions are generally termed long-range when the mean

correlation time, defined as T5
Ð ‘
0
C(t)dt, diverges (Höll

and Kantz 2015) and thus cannot be used to define the

characteristic time scale of autocorrelations. It can also be

shown that in this case the Fourier power spectral density

decreases as a power law as well, with EF(v);v2b and

the exponentb in the range21,b, 1 (Peng et al. 1993).

The exponent a, associated with the detrended fluctua-

tion function F(n), can be related to both g and b through

TABLE 1. Monthly data sources with major parameters and number of data points N used for scaling analysis.

Source and version Spatial resolution

Anomalies calculation and spatial infilling, not

including the treatment of sea ice Start year N

HadCRUT4 58 3 58 Average of observational data, with correction for

errors as median of 100 realizations, weighted for

all the nonmissing grid boxes in each hemisphere

and averaged over hemispheres

1850 1820

CRUTEM4 58 3 58 Average of observational data, with correction for

errors, weighted in the same manner as

HadCRUT4

1850 Various

GISS (GISTEMP) LOTI 28 3 28 Average of observational data, with adjustment for

errors and the addition of weighted averages of

station records in the radius of 1200 km

(alternatively, 250 km) from the gridcell center,

weighted over zones by the zone’s full area

1880 1640

GHCNv3 — Unadjusted and adjusted (for nonclimatic

influences) land station data

1701 Various

ICOADSv2.5 — Quality controlled individual marine observations 1662 Various

OISSTv2 18 3 18 OI of sea surface and satellite records 1981 420

UAHv6 (TLT) 2.58 3 2.58 Quadratic approximation to the average control

radiosonde data, with removed nonclimatic

influences and intersatellite differences

1979 456
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scaling relations a5 12 g/2 and a5 (b1 1)/2 (Peng

et al. 1993). This bounds a to a range 0,a, 1 for sta-

tionary records, where 0:5,a, 1 indicates persistence

in the record. Instances when a$ 1 imply the existence of

intrinsic nonstationarities in the autocorrelated data

(Höll et al. 2016); in this case, DFA functions exhibit

crossovers, while a$ 1 may mean that the underlying

process is of a composite nature (Höll and Kantz 2015) or

that there exists an imbalance between different noise

inputs (Peng et al. 1995). Finally, a5 1:5 indicates brown

noise, the integration of white noise.

The advantages of using DFA over the more con-

ventional statistical approaches (such as the calculation

of the autocorrelation functions or the Fourier power

spectra) for the analysis of records from complex sys-

tems are twofold, and both stem from the method de-

sign. First, DFA takes any typical time-dependent

discrete data series—which is, in general, likely non-

stationary and with unknown trends—and produces a

series that fluctuates much less than the original by

subtracting local trends at different time window lengths.

The remaining time series has the same statistical

properties as the original (Stanley 2000) but is now

prepared in a way that greatly helps clarify its dynamic

behavior. Second, direct calculations of the autocor-

relation function, or of Fourier power spectra, are

hindered by the level of noise present in a typical nat-

ural record by the possible nonstationarities in the

data. DFA, however, calculates the fluctuation func-

tion, which is, by definition, a sum over autocorrela-

tions (Höll and Kantz 2015), and thus fluctuates less.

As a result, one uses a function that is entirely defined

by the autocorrelation function but is more stable

(Bunde et al. 2013b), allowing for clearer (or less noisy)

presentation and interpretation of the results on (log–

log) graphs. In the online supplemental material, we

provide a graphical illustration of these claims for the

statistical functions of the time series of HadCRUT4

global temperature anomalies.

Pure, long-range autocorrelated behavior rarely oc-

curs in natural records. The corresponding DFA2 func-

tions, depicted on the log–log graphs, are thus rarely ideal

linear functions. Instead, they tend to display transient

crossovers in scaling that stem from occurrences of ir-

regular phenomena of different types (Mallat andHwang

1992; Hu et al. 2001). Of those, climate records are likely

to embed effects of mixtures of cyclic components that

can cover a whole band of frequencies and locally perturb

scaling (including DFA2) analysis (Mandelbrot and

Wallis 1969). It has been shown (Hu et al. 2001) that these

perturbations present in a form of peak-like structures,

superposed on the DFA functions of a pure long-range

correlated signal, withwidths wider than those that would

be expected from single sharp periodic waves. The spread

of any such perturbation, and the length of scales that it

covers until asymptotically resuming to the DFA behav-

ior dominated by the long-range correlated noise, de-

pends on the scaling exponent a and the period and/or

amplitude of the hypothetical periodic trend and is

generally much less visible for the greater values of

a [see detailed explanations and theoretical relations

by Mandelbrot and Wallis (1969) and Hu et al. (2001)].

When the effects of such irregularities are visible on

DFA2 curves but are not comparatively strong to

change the global behavior of DFA2 functions, we use

WT analysis to investigate them.

The WT was introduced in order to circumvent the

uncertainty principle problem in classical signal anal-

ysis (Stratimirović et al. 2018) and achieve better

signal localization in both time and frequency than

classical Fourier transform approaches (Morlet 1983;

Grossmann and Morlet 1984). In WT, the size of an

examination window (equivalent to the size of a sliding

segment in DFA) is adjusted to the frequency ana-

lyzed. In this way, an adequate time resolution for high

frequencies and a good frequency resolution for low

frequencies is achieved in a single transform (Bra�ci�c

and Stefanovska 1998).

The continuous WT of a discrete sequence A(k), as

defined by Morlet (1983) and Grossmann and Morlet

(1984) and described in detail in Stratimirović

et al. (2001) and Milo�sević et al. (2002), is the con-

volution of A(k) with wavelet functions ca,b(k):

W(a, b)5�N21

k50 A(k)c
a,b
* (k). Here, a and b are the

scale and translation-in-time (coordinate) parame-

ters, and the asterisk stands for complex conjugate.

To obtain the kind of results comparable with those

of the DFA method, we calculated the wavelet sca-

legrams (mean wavelet power spectra) EW(a), which

are defined as EW(a)5
Ð
W2(a, b)db. The scalegram

EW(a) can be related (Perrier et al. 1995) to the

corresponding Fourier power spectrum EF(v) via the

formula

E
W
(a)5

ð
E

F
(v)jĉ(av)j2 dv , (2)

where the hat designates the Fourier transform, while

EF(v)5 jÂ(v)j2. It stems from Eq. (2) that if either of

the two spectra—EW(a) or EF(v)—exhibits power-law

behavior, then the other will be of the power-law

type as well, with the same power-law exponent

b (Stratimirović et al. 2001). Themeaning of the wavelet

scalegram is the same as that of the classical Fourier

spectrum: it calculates the contribution to the signal

energy along the scale of a.
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In this paper, we found it convenient to use the stan-

dard set of Morlet wavelet functions as a wavelet basis

for our analysis (Morlet 1983; Grossmann and Morlet

1984). TheMorlet wavelet, a plane wavemodulated by a

Gaussian, is a complex nonorthogonal wavelet function

(Torrence and Compo 1998) that is recommended for

use in time series analysis in instances where smooth,

continuous variations in wavelet amplitude are expected

(Torrence and Compo 1998). We choose to use the

Morlet wavelet of order six, so as to also be able to

utilize its shape for localization of singular time events

(Bra�ci�c and Stefanovska 1998). It has been shown that

that this wavelet transform is particularly well adapted

to estimate the local regularity of functions (Mallat and

Hwang 1992); namely, in the local wavelet power spec-

tra, the Morlet wavelet is narrow in spectral (scale)

space and broad in the time space, which produces very

well-localized, relatively sharp peaks in the global WT

spectra, the averages of local spectra over time (Torrence

and Compo 1998). This choice provides us with a possi-

bility to investigate effects of influence of both periodic

and nonperiodic cycles on the dynamics of our data,

together with the effects of occurrences of significant

singular events (e.g., volcanic eruptions). Finally, by

construction, the Morlet wavelet scale is almost equal to

the Fourier scale (Torrence and Compo 1998), which

makes the two power spectra comparable.

We calculated DFA2 fluctuation functions (DFA2ff)

and WT power spectra (WTS) for the temperature

anomalies data series and plotted them on double loga-

rithmic time/scale axes so that the exponents a or b are

estimated by linear fit. We took into consideration only

the values of DFA2ff between the minimum time scale

of n5 5 and the statistically meaningful maximum time

scale of n5N/5 that we decided to use, following rec-

ommendations by Hu et al. (2001), Kantelhardt et al.

(2001), Chen et al. (2002), Bashan et al. (2008), and

Ludescher et al. (2017). Similarly, we calculated WTS

between the time scales of n5 1 and n5N/5, following

the argument that the uppermeaningful time scale for the

use of Morlet wavelets can be even higher than N/5

(Bra�ci�c and Stefanovska 1998). In searching for cycles

in WTS, however, we looked for characteristic peaks

(i.e., local maxima) just within the limits of maximum

meaningful scale set at n5N/10 (Koscielny-Bunde et al.

2006). To ensure that the peaks that we obtained in such

a way are not artifacts of the WT design, we additionally

performed a test of statistical significance for each peak

(Stratimirović et al. 2018), using the tool kit described by

Torrence and Compo (1998) and ready-to-use software

available on the University of Colorado Boulder’s web-

site (Torrence andCompo 2017). The significance of each

peak was determined by comparing its amplitude against

the background global wavelet spectrum for the cor-

responding time scale. This choice was guided by the

consideration that the time series of temperature

anomalies describe the evolution of a complex system

that results from interactions of many constituents

acting on different time scales (Liu 2012; Zanchettin

2017) and are thus mixtures of noise components from

different inputs involved in the process (Stratimirović

et al. 2018).

3. Results

We calculated the DFA2ff and the WTS and their

corresponding scaling exponents a and b for the

HadCRUT4 and NASA GISS LOTI global average

time series of temperature anomalies, and the DFA2

exponents a for each gridpoint time series, for the two

temperature anomaly products. In Fig. 1, we present

the combined DFA2–WTS results for the global av-

erage HadCRUT4 and NASA GISS LOTI series,

together with their raw data; here, and hereafter,

DFA2–WTS represents the abbreviated notation for

the results independently derived from DFA2 and

WTS. In Fig. 1, the DFA2ff and the WTS are depicted

in the form F(n) versus n and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EW(n)3 n

p
versus n,

so as to provide a simple visual comparison of two

methods, given the scaling relation a5 (b1 1)/2. For

the HadCRUT4 global average series, we obtained

a5 0:926 0:04, while the NASA GISS LOTI time

series yields a5 0:976 0:04. Even if they leave the

obtained scaling law valid, small deviations from the

straight lines are already visible on both DFA2 plots

presented. The use of WT enabled us to define these

deviations as cycles and/or singularities present at

the annual, two interannual, and near-decadal levels

in HadCRUT4, and as the annual, interannual, and

decadal variabilities in NASA GISS LOTI series. The

calculated values of the scaling exponents a and b align

for both data series within the range of the standard

deviation of a that depends on the time series length N

(Bashan et al. 2008), in agreement with previous find-

ings (Markonis and Koutsoyiannis 2013; Lennartz and

Bunde 2011). In what follows, we separately illustrate

the results for the gridpoint time series for the two

datasets, then explore their differences.

a. Global pattern of scaling: HadCRUT4

Figure 2 shows the global scaling pattern of the time

series of HadCRUT4 gridded temperature anomalies.

Depicted are values of the scaling exponent a for the

time series of each grid point on the 58 3 58 grid, to-
gether with the latitudinal averages of the exponent a.

Long-range correlated behavior is found in all of the
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grid points belonging to the ocean regions and in nearly

all grid points on land (in 27 land grid cells, we found

0:45#a# 0:5). There is a land–ocean contrast in per-

sistence, with marine data that feature a substantially

more pronounced LTP than land data, a result that

agrees with previous findings based on individual sta-

tion data (Bunde and Havlin 2002) and the partial

assessment of the HadCRUT2 grid (Fraedrich and

Blender 2003). Our results additionally reveal the non-

uniformity of scaling within ocean as well as land data:

this is how, for example, there is a region of higher-than-

average LTP in the tropical land data, possibly following

the distribution of rain forests; a region of lower-than-

average LTP that differentiates the Indian Ocean from

other basins (e.g., Zanchettin et al. 2013) that can be a

signature of the South Equatorial Current (Rybski et al.

2008); or instances of higher-than-average LTP in vari-

ous ocean basins that is arguably a signature of currents

(in upwelling regions or at the Subpolar Gyre in the

North Atlantic Ocean). At the basin scale, the spatial

patterns of LTP values highlight differences in large-

scale modes of sea surface temperature variability. For

instance, the North Pacific and, especially, the North

Atlantic Oceans display high persistence, whereas the

tropical Indian Ocean displays weaker persistence. The

former basins are expected to be dominated by modes

of sea surface temperature variability at decadal and

multidecadal time scales, namely, the Pacific decadal

oscillation and the Atlantic multidecadal oscillation

(e.g., Zanchettin et al. 2013), whereas the latter basin is

dominated by interannual sea surface temperature var-

iability (Zanchettin et al. 2013). Therefore, the global

LTP pattern consistently relates with large-scale modes

of climate variability, which provides a useful frame-

work to interpret the physical meaning of the LTP values.

To enable a detailed examination of the heterogeneity of

HadCRUT4 global temperature scaling, we provide two

additional maps of the global scaling pattern in the

online supplemental material, with the interval thresh-

olds of mapping set at 1/2 and 1/4 of the interval presented

in Fig. 2.

Figure 2 also shows latitudinal averages of the DFA2

exponent a, calculated along the 36 latitude rows of the

HadCRUT4 dataset. It presents a weak latitude de-

pendence of a, with lower LTP in high latitudes; this

pattern seems to follow the global distribution of land

and is probably somewhat affected by the strong influ-

ence of El Niño–Southern Oscillation (ENSO) tele-

connections in the midlatitudes (Graf and Zanchettin

2012). The global averages of the scaling exponent

a—the normal average, calculated as the average of all

the DFA2 exponents of all the grid cells (when it is

ahcn
ave 5 0:646 0:04), and the weighted average, aver-

aged according to the gridcell areas (with weights equal

to the cosines of the central latitudes of each grid

box (Met Office Hadley Centre 2010), which yields

FIG. 1. Results of the DFA2–WTS analysis of the time series of global average temperature anomalies of the HadCRUT4 and NASA

GISS LOTI datasets. (top) Data and (bottom) DFA2ff (solid lines) and WTS (filled circles) functions, together with linear fits to the

DFA2ff and WTS curves (pink solid lines). The DFA2ff and the WTS are depicted on a log–log graph, in the form F(n) vs n andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EW(n)3n

p
vs n, to allow for visual comparability between the two methods. Values of the DFA2 exponent a and the corresponding

WTS exponent ab are provided; for the estimation of errors to DFA2 exponents, see Bashan et al. (2008). Significant WTS peaks are

marked with arrows.
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Unauthenticated | Downloaded 03/27/21 07:08 PM UTC



ahcw
ave 5 0:726 0:04)—are different from the value ofa that

we obtained for the global time series, a5 0:926 0:04

(shown in Fig. 1). This result may be explained if we keep

in mind the dataset construction methodology.

Namely, the HadCRUT4 global temperature series

(and similarly, NASA GISS LOTI; see Table 1) is

constructed as the weighted average of all the non-

missing gridbox anomalies, which are themselves

(nonweighted, except for the grid cells composed of a

combination of land and marine data) spatial averages

of instrumental records enclosed in each grid box.

The process of averaging merges (adds) values of

monthly data points from different records and thus

superposes their different scaling and different cyclic

amplitudes and distribution, producing a global tem-

perature signal that wields the scaling properties of all

the averaged data, together with the influence of all

their cycles combined. The DFA2–WTS analysis of

such a signal will naturally register all these in-

fluences. A similar combination of signals was studied

in the systematic assessment of effects of non-

stationarities on DFA by Chen et al. (2002), where

different artificially generated time series with dif-

ferent scaling exponents a were used to analyze

properties of signals comprising segments of these

time series. The study reported that ‘‘the behavior of

F(n)/n for a nonstationary signal comprised of mixed

segments with different correlations is dominated by

the segments exhibiting higher positive correlations

even in the case when their relative fraction in the

signal is small.’’ At that time, the authors found this

observation to be pertinent to real physiological re-

cords and to be true even in cases when signals of high

positive correlations comprise only 10% of the entire

time series. In the supplemental material, we assessed

this dominance for the HadCRUT4 temperature data,

in relation to the theoretical superposition rule pro-

vided by Chen et al. (2002), and found that the effect

described by Chen et al. (2002) agrees well with the

averages of individual gridcell or observational record

DFA2 functions, but the dominance of the high LTP

time series is even more pronounced in DFA2 func-

tions of time series that were made as averages of in-

dividual gridcell or observational records first. In other

words, even if signals with high LTP are not dominant

by appearance in the global temperature pattern

(which is evident from the values of ahcn
ave and ahcw

ave ), and

even if they may not significantly affect the local

scaling (the HadCRUT4 global scaling pattern is het-

erogeneous), they will have a significant relative in-

fluence on regional and global temperature scaling.

Because both analysis products weight the temperature

FIG. 2. (left) DFA2 exponents a calculated for all available gridpoint time series of tem-

perature anomalies in theHadCRUT4 dataset. Values of 0,a, 0:45 belong to grid boxes with

missing data. (right) Latitudinal averages of a, calculated along the 36 latitude rows of the

HadCRUT4 dataset (y-axis grid lines are inserted as visual guides).
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anomalies of grid cells by the cell’s full area, this is

probably especially true for the dominance exhibited

by the high LTP of gridcell data along the midlatitudes.

Figure 3 demonstrates this effect in the case of the

DFA2–WTS functions for the HadCRUT4 averaged

data for the Northern Hemisphere, Southern Hemi-

sphere, and tropics. As shown in Fig. 3, the Southern

Hemisphere has larger LTP than the Northern Hemi-

sphere, mainly because the Southern Hemisphere

holds a larger area of ocean and a smaller area of the

land surface, and because of the ocean–land contrast in

persistence. It is additionally obvious from Fig. 3 that

global HadCRUT scaling follows (or is dominated by)

the Southern Hemisphere scaling that is, in turn, likely

largely influenced by the scaling at the tropics.

To understand how the obtained results are affected

by the data loss in regions where large amounts of source

data are missing, were removed due to artifacts in the

observational records (Fraedrich and Blender 2003),

or underwent a considerable adjustment due to in-

homogeneous observations (Menne and Williams 2009;

Alexandersson 1986), we compared the DFA2ff and

WTS behavior of the raw (unadjusted) and the adjusted

data for several such land stations. Because of the large

amount of data, we could not investigate these effects

for all records; wemade a choice to focus our analysis on

land stations that are the sole source or one of the few

sources of observations available in the considered grid

cell. Our results, shown in Fig. 4 for two illustrative ex-

amples, demonstrate that in such cases, the DFA2 ex-

ponents for the adjusted data in the gridded dataset

can be slightly or even substantially smaller than for

the raw data. The correspondingWTS reveals that this

is probably due to the modulation of the annual cycle,

as well as to the strong dampening of interannual and

decadal fluctuations in the adjusted data. Artificial

reduction of LTP by data adjustment seems to be a

general feature. The opposite behavior (i.e., an in-

crease of LTP by data adjustment, as shown in Fig. 5)

only occurs in several polar or subpolar stations.

There, systematic lack of data for entire seasons

yields DFA2 exponents of the adjusted series that are

slightly higher than those of the corresponding raw

series, probably as a result of superposition of sea-

sonality to the data. These findings indicate that the

true DFA2 exponents for a largely predominant part

of the HadCRUT4 grid, where there is a large per-

centage of missing values (Fraedrich and Blender

2003), are likely higher than those estimated from

the actual gridded data and illustrated in Fig. 2. Our

conclusion about a likely underestimation of the

DFA2 exponent is in line with previous findings on

effects of homogenization (Rust et al. 2008) on arti-

ficial data. The results also suggest that, excluding

FIG. 3. Results of the DFA2–WTS analysis of the time series of global average temperature

anomalies of the HadCRUT4, together with the average temperature anomalies for the

Northern and Southern Hemispheres and the tropics, presented as in Fig. 1. Dotted vertical

lines at t 5 12, 40, 72, and 110 months are given as visual guides.
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polar and parts of subpolar regions for substantial

data inhomogeneity, the HadCRUT4 global tem-

perature is long-range correlated (i.e., all the gridded

DFA2 exponents are likely equal to or higher

than 0.5).

Finally, we inspected the DFA2ff that have scaling

exponent values larger than 1 to determine whether they

display crossovers and thus the existence of intrinsic

nonstationarities (Höll et al. 2016) that should then

be explored and understood further. None of the Had-

CRUT4 grid points with a. 1 has a crossover in DFA2

behavior. The comparison with corresponding WTS,

provided in Fig. 6, shows that the DFA2–WTS slopes

are this large probably owing to the strong interan-

nual and multidecadal variability in their underlying

data series that, in the time range of statistical

significance of our results, may contribute to a slight

overestimation of the scaling exponent a. This result

seems to follow up on the existing research that in-

vestigates scaling of instrumental and proxy records

of global temperature on much larger time scales. In

particular, Lovejoy and Schertzer (2013) and Markonis

and Koutsoyiannis (2013) indicate that probably no

prominent source of nonstationarity exists that would

change the scaling regime and produce crossovers in

the scaling behavior in the range of the instrumen-

tal data that we are interested in (up to one decade).

Because of the limited range of statistically mean-

ingful scales for instrumental records, we were not

able to further verify whether the scaling depicted

in Fig. 6 is a part of the underlying very long-term

persistent (Rybski et al. 2008;Markonis andKoutsoyiannis

FIG. 4. Two examples of the (top) DFA2ff and (bottom)WTS calculated for the raw and adjusted temperature records of stations from

the HadCRUT4 gridded dataset with (left) considerable amount of missing data and (right) observations that were preprocessed for data

homogenization. In the DFA2ff graphs, the values of scaling exponents are given for both raw (unadjusted) data aR and adjusted data aA.

In WTS graphs, dotted vertical lines at t5 12 months are given as visual guides. The coordinates indicating locations of land stations are

given in the graph legends.
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2013) or antipersistent (Carvalho et al. 2007; Lovejoy and

Schertzer 2013; Luo et al. 2015) order.

b. Global pattern of scaling: NASA GISS LOTI

Figure 7 shows the DFA2 global pattern for the

NASAGISS LOTI 28 3 28 gridded time series, together

with latitudinal averages over 90 GISS latitudes, which

produce the normal average over all grid cells of

agissn
ave 5 0:746 0:04 and the weighted average of

agissw
ave 5 0:816 0:04. Additional maps, created with

lower-interval thresholds, are provided in the supple-

mental material. Visual comparison between Fig. 2 and

Fig. 7 suggests that the NASA GISS LOTI and the

HadCRUT4 data display a similar global pattern of

scaling. There are, however, noticeable differences be-

tween both datasets: NASA GISS data display much

more homogeneity in scaling within land and within

ocean regions, with higher a values than HadCRUT4

over the ocean and lower a values over the land. An

estimate of the distribution and the range of differences

in values of a between the two datasets is given in

Fig. S3 in the supplemental material. Over the ocean,

particularly high values of the DFA2 exponent ex-

ceeding a5 1 are identified in key regions of oceanic

and coupled atmosphere–ocean variability, such as

ENSO in the equatorial Pacific and at the sea ice edge

south of Spitsbergen. In contrast with the HadCRUT4

dataset, where the Indian Ocean emerges as a pecu-

liar oceanic region with low DFA2 exponents, the

NASAGISS dataset yields high DFA2 exponent values,

especially west of the Maritime Continent. These dif-

ferences in persistence are linked to different represen-

tations of climatic modes in both datasets, particularly

regarding those centered over the Indian Ocean. We

also note that over the broad Pacific region, NASA

GISSLOTI provides a stronger interhemispheric symmetry

FIG. 5. Two examples of the (top) DFA2ff and (bottom)WTS calculated for the raw (unadjusted) and adjusted temperature HadCRUT4

records of (left) polar or (right) subpolar stations that systematically miss data for entire seasons. In the DFA2ff graphs, the values of scaling

exponents are given for both raw dataaR and adjusted dataaA. InWTS graphs, dotted vertical lines at t5 6 and 12months are given as visual

guides. The coordinates indicating locations of land stations are given in the graph legends.
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in the LTP values, compared to HadCRUT4, and a

clearer identification of the extratropical gyres in both

hemispheres. These differences are likely to yield dif-

ferent representations in both datasets of the Pacific

decadal oscillation, centered in the northern basin, as

well as of the interdecadal Pacific oscillation, straddling

the northern and southern basins. In what follows, we

will try to evaluate the dissimilarity in dataset con-

struction methodologies as a source for the obtained

dataset dissimilarity in regional scaling.

c. Understanding differences in scaling between
HadCRUT4 and NASA GISS LOTI

1) LAND: EFFECTS OF THE 1200-KM RULE

Here, HadCRUT4–NASA GISS LOTI differences

in values of scaling over the land are assessed, ac-

counting for the different approaches employed to

solve the problem of incomplete spatial coverage in

their construction. HadCRUT4 does not employ any

form of spatial infilling, and as a result, gridbox

anomalies can readily be traced back to observational

records (Morice et al. 2012). NASA GISS LOTI in-

stead interpolates among station measurements and

extrapolates anomalies as far as 1200 km into regions

without measurement stations (Hansen et al. 2010).

To probe whether the spatial infilling that is employed

in the construction of the NASA GISS dataset

determines the observed difference in scaling over

land between NASA GISS and HadCRUT4, we

compared the average DFA2ff and WTS of the

raw adjusted station records that contribute to a

HadCRUT4 grid point, with the DFA2–WTS Had-

CRUT4 (adjusted) results and the NASA GISS LOTI

DFA2–WTS results within the corresponding grid

point. We repeated this procedure for several sparsely

filled (in terms of number of recording stations) and

several densely populated grid points. Examples of

our findings are given in Fig. 8. Our results show that

in sparsely filled grid cells, the procedure of spatial

interpolation of station data, which is the only data

processing performed in the HadCRUT4 dataset,

lowers the scaling exponent a due to the modulation

of the interannual and multidecadal variability and

the flattening of noise at scales higher than annual.

This finding is not universal for all spatially averaged

HadCRUT4 data; it depends on the relative influence

of the high LTP records present within the consid-

ered grid box. In NASA GISS LOTI, the additional

procedure of spatial infilling within a 1200-km radius

from the selected grid point increases this effect (i.e.,

it further decreases the value of a; see left panels in

Fig. 8). Moreover, in the case presented in Fig. 8,

the surrounding land grid points have significantly

different scaling exponents, so that the process of

extrapolation as far as 1200 km integrates spurious

FIG. 6. Examples of the calculated DFA2ff (solid lines) and WTS (filled circles) functions

for the grid points in theHadCRUT4 dataset that have scaling exponents a. 1. Vertical lines

at t 5 45, 70, and 110 months are given as visual guides.
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correlations that are entirely location related (i.e.,

dependent on the scaling of the nearest-neighbor grid

cells). For this reason, changes in the values of a over

land introduced by the 1200-km rule in sparsely filled

grid boxes cannot be viewed or corrected as for the

systematic bias. Finally, the observed discrepancy

between HadCRUT4 and NASA GISS LOTI scaling

does not appear at grid points sufficiently populated

FIG. 8. An example of the effect of a spatial infilling procedure on DFA2–WTS calculations for (left) sparsely infilled and (right)

sufficiently populated HadCRUT4 grid points. Depicted are average DFA2ff of the station records that compose grid points (pink solid

line), the averageDFA2ff of the four NASAGISS LOTI grid points encompassed by the grid point analyzed (green filled circles), and the

DFA2 HadCRUT4 results (gray filled circles), with the corresponding WTS given in the figure insets.

FIG. 7. (left) DFA2 exponents a calculated for all available gridpoint time series of tem-

perature anomalies in the NASA GISS LOTI dataset. Values of 0,a, 0:45 belong to grid

boxes with missing data. (right) Latitudinal averages of a, calculated along the 90 latitude rows

of the GISS dataset (y-axis grid lines are inserted as visual guides).
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with recording stations (see example in the right

panels of Fig. 8).

2) OCEAN: EFFECTS OF INCLUSION OF SATELLITE

DATA

NASA GISS LOTI constructs ocean data (Hansen

et al. 2010) as an integration of the Met Office Hadley

Centre analysis of SSTs (HadISST1; the sole basis of

HadCRUT4 ocean data; Rayner et al. 2003) for the

1880–1981 period, where measurements are ship based,

and satellite SST measurements (OISSTv2; Reynolds

et al. 2007) from 1982 to the present. Satellite measure-

ments in the NASA GISS dataset are additionally

calibrated with the help of ship and buoy data (Hansen

et al. 2010). To understand how this methodological

difference affects scaling over ocean regions in both

datasets, we calculated and compared DFA2ff and

WTS of several HadCRUT4 marine grid points with

the matching average (within the same HadCRUT4

grid cell) NASA GISS LOTI, average OISSTv2, and

average UAH satellite temperature for the lower tro-

posphere (TLT) scaling. An example of the obtained

findings is given in Fig. 9, showing the TLT UAH data

scale as white noise (with a’ 0:5 and flat b’ 0 WTS).

Thus, it seems that the optimization procedure em-

ployed in the construction of OISSTv2 raises the

DFA2–WTS slopes of the NASAGISS data, leading to

the higher NASA GISS LOTI scaling. From the WTS

given in Fig. 9, it is apparent that this effect is most

prominent in the range of scales of up to 1 year, which

is very likely the result of the superimposed seasonality

on the marine satellite record. This result was robust

for all the grid points that we probed.

4. Discussion and conclusions

We used detrended fluctuation analysis of second-

order (DFA2) and wavelet-based spectral (WTS)

analysis to investigate and quantify the global pattern

of scaling in major datasets of observed near-surface

air temperature anomalies and to better understand

cyclic behavior as a possible underlying cause of the

observed long-term scaling behavior. Both methods

allow us to overcome problems related to nonlinear-

ity and partially nonstationarity of natural data series.

We focused our analysis on two prominent sources

of global temperature data, namely, the Met Office

HadCRUT4 and the NASA GISS LOTI gridded his-

torical records. Our approach allowed us to charac-

terize the global pattern of temperature scaling and to

investigate the relevance and the extent of possible

influences of real or artificial (i.e., originated by data

processing) cycles upon global scaling. In particular,

we investigated how DFA2ff and WTS can be affected

by data processing compensating for the issue of in-

homogeneity of data linked to the scarcity of records or

to the changes of data-recording practices. Finally, we

studied the possible structural sources of dissimilarities

in global pattern of scaling that we found to exist between

the HadCRUT4 and NASA GISS LOTI datasets.

We found that the global temperature pattern is likely

long-range autocorrelated, except for polar and parts of

FIG. 9. Comparison of DFA2–WTSHadCRUT4 gridpoint scaling results (violet-filled circles) with thematching average of four (within

the same HadCRUT4 grid point) NASA GISS results (green-filled circles), the average of 25 OISSTv2 results (pink solid line), and the

average of four UAH satellite temperature results for TLT scaling (gray solid line). The results are given for the HadCRUT4 grid box

centered at 7.58N, 167.58W.
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subpolar regions, where data inhomogeneity is sub-

stantial. We confirmed the existence of a land–ocean

contrast in persistence (Bunde andHavlin 2002; Fraedrich

and Blender 2003), with marine data showing an appre-

ciably more pronounced long-range persistence than land

data. Four prominent cyclic influences, or characteris-

tic times of underlying processes, emerged in the time

range of analysis of our data. They appear at periods of

12, ;40, 72, and 110 months. The first two cycles that

we found in our data can be attributed to the seasonal

cycle and probably to the influence of the leading

ENSO eigenmode (Penland and Matrosova 2006;

Compo and Sardeshmukh 2010) on sea surface and

land temperatures. The other two characteristic times

are difficult to attribute to any individual or canonical

source of climate variability. We refer to research

showing that the period of approximately 6 years

can be related to the variance of ENSO indices such

as Niño-3.4 SSTs (Penland and Matrosova 2006) or

to the first harmonics of decadal variabilities (Zanchettin

et al. 2013), while the near-decadal period of 110 months

can emerge as a response to nonperiodic strong events of

volcanic eruptions (Rypdal 2012; Lovejoy and Varotsos

2016) or as a reflection of decadal climate variability

originated either by internal processes (Liu 2012) or

forced by external natural factors (Zanchettin 2017). A

systematic assessment of the observational records that

will explore the universality of appearance of the range of

cycles obtained here remains a task for future research.

Understanding of universality and of the nature of these

irregular structures, be they periodic or nonperiodic

phenomena or even significant singular events (Mallat

and Hwang 1992; Zanchettin 2017), may be used as a tool

to objectively differentiate between climate scaling re-

gimes (Stratimirović et al. 2018) or as an additional source

of information in climate modeling efforts (Lima and

Lall 2010).

We found that the spatial average of scaling of the

global gridded temperatures is significantly lower than

the scaling of the spatially averaged global tempera-

ture time series and argued that this is an effect of the

disproportionate influence of the high LTP series, par-

ticularly those in the midlatitudes, on regional, hemi-

spheric, and global averages. We showed that the global

temperature scaling is in this way dominated by the

scaling of the Southern Hemisphere, which in turn is

possibly significantly determined by the scaling in the

tropics. This effect may explain why our values of DFA2

exponents averaged along parallels, particularly along

themidlatitudes, differ from the corresponding averages

calculated for the global coupled general circulation

models by Rybski et al. (2008). Finally, these obser-

vations may indicate that the spatial resolution of

global temperature products can affect their local

(individual grid cells) and global scaling behaviors

and that the spatial scaling may be important for

understanding the dynamics underlying the observed

climate variability. There is probably a need in cli-

matically diverse regions for a more detailed sam-

pling of the different areas (in both datasets) in order

to account for their different scaling regimes in the

regional estimate and to accurately determine regional

dynamics. Sea ice dynamics seem to have a strong effect

on scaling, as demonstrated by the sharp edges in the

DFA2 exponents consistently detected in NASA GISS

LOTI and HadCRUT4 between areas affected and not

affected by sea ice.Whether the low persistence observed

in the sea ice regions originates from the strong seasonal

cycle of sea ice, rather than from other processes of the

coupled ocean–atmosphere–sea ice system, remains to be

determined.

Our results unraveled the nonuniformity of scaling

within ocean or land data and the pronounced differ-

ences of such nonuniformity in the two datasets. Our

findings suggest that the observed nonuniformity of

scaling can reflect a number of different natural (Fraedrich

and Blender 2003), as well as methodological, causes,

whose individual contribution is difficult to disentangle.

We found that for the still-predominant part of the ana-

lyzed datasets affected by a large percentage of missing

values, the real values of the scaling exponents are likely

higher than those calculated. This result is in accordance

with assessments of artificial data with similar properties

(Rust et al. 2008). We found instances of amplification

of cyclic influence or even introduction of new cycles,

sometimes coupled with the reduction of noise, in both

datasets and due to the homogenization and optimiza-

tion of the raw (unadjusted) temperature time series;

these effects are probably more pronounced in cases of

corrections due to the actual data loss (Chen et al. 2002;

Ma et al. 2010). Since there is no apparent universal

solution to this problem, we avoid conclusively as-

serting the exact nature of the dynamics underlying the

temperature time series for such locations.

We also assessed structural uncertainties that arise

from methodological choices made in the two temper-

ature analysis products. We showed instances where

spurious scaling is introduced in the NASA GISS data-

set through spatial infilling procedure, or where re-

inforcement of the annual cycle is introduced due to the

optimization of integrated satellite records. This high-

lights once more the need to consult in detail how data

are prepared before assessing climate dynamics based

on data analysis (von Storch et al. 2012). Neverthe-

less, keeping in mind the stochastic nature of climate

(Hasselmann 1976; Franzke et al. 2012; Watkins 2017)
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and the current lack of an effective model capable of

capturing long-range interactions between large num-

bers of interacting parts that would mimic LTP as an

output from various climate systems (Ludescher et al.

2017), the observed global temperature pattern of scal-

ing can serve as a nontrivial test (Monetti et al. 2003) for

dynamic properties of current climate models.

Our results do not settle the debate about nature

and origins of scaling properties of temperature or of

the observed natural nonuniformity of scaling (Levine

and McPhaden 2016; Markonis and Koutsoyiannis 2013;

Bunde and Lennartz 2012; Rypdal 2012; Fraedrich et al.

2004; Stanley 1999; Press 1978). Instead, they point to the

heterogeneity of scaling as an important area for further

investigation in this context. This seems to be crucial for

progress in our understanding of the critical problem of

detection and attribution of trends and other climate

change evidence (Crok et al. 2014; Zanchettin 2017).

Specifically, if we assume that the observed temperature

evolution, similar for both datasets (IPCC 2013, their

Fig. 2.20), is a realization of a long-term autocorrelated

process, then the appropriate statistical approaches and

underlying theories must be applied to the detection

problem. Current analytical approaches and numeri-

cal estimations (Lennartz and Bunde 2009, 2011) in-

dicate the DFA2 scaling exponent a, along with the

observed linear trend and the standard deviation around

the data regression line, to be an important quantity

to estimate anthropogenic trends. The heterogeneous

scaling of global temperature reported in our study, and

especially the presented evidence of weakly correlated

or even random (with a’ 0:5) fluctuations in gridded

temperature data, fosters further investigation.
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