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Novel approach to analysing large data sets of personal sun
exposure measurements
Suzana M. Blesić1,2, Đorđe I. Stratimirović2,3, Jelena V. Ajtić2,4, Caradee Y. Wright5,6 and Martin W. Allen7

Personal sun exposure measurements provide important information to guide the development of sun awareness and disease
prevention campaigns. We assess the scaling properties of personal ultraviolet radiation (pUVR) sun exposure measurements using
the wavelet transform (WT) spectral analysis to process long-range, high-frequency personal recordings collected by electronic UVR
dosimeters designed to measure erythemal UVR exposure. We analysed the sun exposure recordings of school children, farmers,
marathon runners and outdoor workers in South Africa, and construction workers and work site supervisors in New Zealand. We
found scaling behaviour in all the analysed pUVR data sets. We found that the observed scaling changes from uncorrelated to long-
range correlated with increasing duration of sun exposure. Peaks in the WT spectra that we found suggest the existence of
characteristic times in sun exposure behaviour that were to some extent universal across our data set. Our study also showed that
WT measures enable group classification, as well as distinction between individual UVR exposures, otherwise unattainable by
conventional statistical methods.
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INTRODUCTION
In recent decades, the harmful human health effects associated
with excess sun exposure have been increasing.1 The main causes
are changes in (1) ambient solar ultraviolet radiation (UVR) levels
reaching the Earth’s surface and (2) in factors related to human
behaviour when spending time outdoors.1–3 Although some sun
exposure is beneficial for vitamin D production, excess short-term
sun exposure is associated with DNA damage.4

The most prominent adverse health effect, skin cancer, has seen
increased rates in several countries around the world.1 UVR
exposure is the only known modifiable risk factor for skin cancer.5

Artificial UVR exposure sources, such as electric welding arcs and
sunbeds, have proven an association between exposure and skin
carcinogenesis, whereas excess sunburning from solar UVR
exposure, particularly during childhood, has been linked to
melanoma skin cancer.6 To be optimally effective in reducing
incidence of excess UVR exposure, especially during childhood,
and thus reducing subsequent risk of skin cancer, sufficient UVR
exposure information is required to tailor design of intervention
programmes so that they are cost effective, appropriately targeted
and ethically acceptable.
Since the 1970s, some studies have measured sun exposure

during selected activities such as gardening or walking.7–11 Others
have focussed on measuring personal solar UVR exposure to
generate baseline exposures in different population groups and
behavioural settings.12,13 There have also been a few longitudinal
studies concerning child sun exposure.14–16 Whereas some studies
have directly measured personal UVR exposure,17,18 others have

focused on assessing sun-protective practices and indirectly
estimating personal UVR exposure.19,20 These data are used for
planning and development of skin cancer prevention and sun
awareness campaigns. The ultimate goal is for individuals to take
heed of campaign messages, alter their sun exposure behaviour
and thereby reduce their skin cancer risk.
In personal dosimetry, measurements are performed by a

dosimeter attached to each individual participating in the
particular study. A dosimeter indicates UVR effect on a specific
biological system when a measurable property changes in a repro-
ducible manner upon exposure to UVR.21 A dosimeter is calibrated
in physical units against a meteorological-grade instrument
that measures UVR; for example, a spectroradiometer whose
calibration can ideally be traced to the US National Institute of
Standards and Technology (NIST).22 Calibration is performed by
cross-referencing the systems under a source that is spectrally
similar to that to which the dosimeters will be exposed.21 A
dosimeter’s suitability depends on its specific response spectrum.
Ideally, a dosimeter should be precise, accurate, reliable and
independent of temperature and humidity; it should have a
reproducible biological response; and be inexpensive.11 To date,
dosimeters used to measure personal UVR exposure have
had a response that closely mimicked the erythemal action
spectrum (EAS) (sunburning response) as defined by the Interna-
tional Commission on Illumination.18,23,24 Other dosimeters are
tailored for different action spectra, such as a biological spore
dosimeter that is used to estimate DNA-damaging UVR expo-
sure EAS.25
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Three dosimeter types have been used to measure personal
UVR exposure (pUVR): chemical (such as polysulphone film),
biological and digital electronic. However, the focus here is on
digital electronic dosimeters that are increasingly used today. The
advantages of digital electronic dosimeters include online data
logging and download capabilities, repeated use within a certain
battery life and small dimensions and weight to permit ease of
personal use.21 Furthermore, their internal loggers can be set to
measure and record pUVR levels at various intervals. When
recording intervals are set for frequent data measurement, and
when individuals wear the UVR dosimeter for a prolonged period
of time (several days, weeks or months), measurements result in a
large data set that requires intense processing, analysis and
interpretation.13,26

Despite the large number of data points collected, the studies of
pUVR exposure are typically limited to conventional statistical
measures: determining mean and/or median total daily or hourly
UVR exposures for all participants or by specified participant
subgroups of interest (see, e.g., Liley et al.27). Heuristic search
algorithms, statistical data processing and supervised and unsuper-
vised machine learning were applied to a study of pUVR exposure
measurements among 517 participants (8 to 10 weeks of dosimeter
use).27 Attempts were made to remove false, unreliable measure-
ments and interpolate data across areas with missing data using
prediction techniques. Despite these efforts, data were finally
combined into three periods per day to match participant’s clothing
logs recorded in diaries. Given the highly variable nature of personal
solar UVR exposure and the often unpredictability of daily human
behaviour, the use of more sophisticated analytical techniques is
necessary to optimally interpret such large data sets to draw as much
value and information as possible from the data. In this paper, we
apply one such method, the wavelet transform (WT) spectral analysis,
to uncover dynamical and behavioural features of pUVR data in order
to introduce new measures that will be able to discriminate between
individual or group exposure in a general data set. WT spectral
analysis is an advanced statistical technique for processing long-
range, high-frequency personal recordings; WT spectral analysis, like
conventional Fourier analysis, estimates the spectral characteristics of
a time series as a function of time.28 In this way, it represents an
extension to conventional methods of data analysis.
WT analysis is a widely used method to quantify correlations in

non-linear and sometimes non-stationary natural or human-made
time series, such as the heart rate29 or neuronal activity,30 stock
market31 or global climate variability.32,33 For a time series of
natural or human-made records, WT analysis provides a systematic
way of obtaining information that is not readily available in the
raw data.34 It aids the understanding of phenomena characterized
by fluctuations over many timescales. If the WT spectral functions
of the relevant data set are of the power-law type, the correlations
in the fluctuations at different timescales are described by the
scale-invariant or scaling exponent β, the power exponent of the
power-law function. This quantitative measure provides a
description of the underlying dynamical processes in the system.
The system dynamics at a given timescale is reflected by a
particular shape of the scaling function, values of scaling exponent
at different timescales and positions of crossovers in scaling.
Scaling functions, therefore, offer additional information on the
existence of trends or characteristic times in investigated data
sets. Finally, a large WT power value at a given scale and at a
particular point in time implies that the oscillation at the
frequency related to that scale exists over the time period centred
around this time location.34 The existence of peaks within the
calculated WT power spectra then informs on the existence of
cycles in the data.
This study addresses the question of whether WT spectral ana-

lysis can be utilized to compare pUVR time series from different
population groups or from different activities, and to examine
differences or similarities across groups and/or activities. We also

made an attempt to address the question of whether the
complexity of pUVR records is specifically limited to the statistical
behaviour of each individual time series, or whether parts of a
pUVR series complexity can be attributed to the effects related to
the influence of atmospheric environmental factors.

MATERIALS AND METHODS
Data
Data were collected using digital electronic UVR dosimeter badges worn
by volunteers of different occupations and in different activities and
environments. Volunteers included South African school children, teachers,
sailors, cyclists, marathon runners, farm workers and gardeners, and New
Zealand construction workers. The UVR dosimeter badges were developed
at the University of Canterbury, New Zealand, to measure personal
exposure to solar erythemal UVR (290–400 nm) and have been described
in detail elsewhere.22,26 Briefly, the main component of the dosimeter
badge is a miniature, aluminium gallium nitride (AlGaN) photodetector
with an engineered spectral response that closely matches the CIE
erythemal action spectrum. The detector response is electronically
converted into a time-stamped digital count (on a scale from 1 to 1024)
that is directly proportional to the incident erythemally weighted UVR
irradiance. The detector is encased in a weatherproof polytetrafluoroethy-
lene (PTFE) enclosure that also acts as a diffuser to ensure that the angular
response of the instrument is reasonably close to the cosine response of
human skin.35 The badge is powered by a small lithium coin cell battery
(CR 1632, 3 V). It has a diameter of 35 mm, thickness of 10 mm, weighs
∼ 19 g and can either be worn on a wrist strap, pinned to clothing or in the
case of construction industry workers attached to a hard hat. The badges
were set to record data every 1 min in day/night mode (programmed to
record from 0700 to 2100 h) for records taken in South Africa, or every 8 s
for records from New Zealand. Each badge had sufficient on-board
memory and battery capacity to store numerous days of data that were
then retrieved via a USB-serial data cable.
UVR dosimeter badge data in counts were used in the WT analysis,

described below. In some cases, the counts were converted to erythemally
weighted UVR irradiance in units of ultraviolet index (UVI), using
proportionality constants established via cross calibration against “Robert-
son–Berger type” meteorological grade instruments.22 The UVI is a non-
dimensional quantity defined by the formula:

UVI ¼ ker ´
Z 400nm

250nm
Eλ ´ Ser λð Þdλ; ð1Þ

where Eλ is the solar spectral irradiance expressed in W/m2/nm at
wavelength λ and dλ is the wavelength interval used in the summation.
Ser(λ) is the CIE reference erythemal action spectrum and ker is a constant
equal to 40 W/ m2. Consequently, 1 UVI is equivalent to 0.025 W/m2 of
erythemally weighted UVR irradiance. Individual UVI data points can then
be integrated over any required time period to determine the received UV
dose in units of standard erythemal dose (SED) where 1 SED= 100 J/m2.

WT Analysis
The WT method was originally introduced to study complex natural
signals. The technique was devised to achieve good signal localization in
both time and frequency that a classical Fourier transform approach
lacks.36,37 Namely, in WT the window of examination length is adjusted to
the frequency analysed; slow events are examined with a long window,
whereas a shorter window is used for fast events. In this way, an adequate
time resolution for high frequencies and a good frequency resolution for
low frequencies are achieved in a single transformation.38

The continuous WT of a discrete sequence U(k) is defined as the
convolution of U(k) with wavelet functions ψa;bðkÞ in the following way:

Wpða; bÞ ¼
XN - 1

k¼0
U kð Þψ�

a;bðkÞ; ð2Þ
with a and b being the scale and translation-in-time (coordinate)
parameters, N the total length of the data series (in this study, pUVR)
and the asterisk stands for complex conjugate. To examine the existence of
scaling, trends and cycles in the pUVR data, the wavelet scalegrams (the
mean wavelet power spectra) EW(a), defined by:

EWðaÞ ¼
Z

W2
p a; bð Þdb ð3Þ
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are used. The scalegram EW(a) can be related39 to the corresponding
Fourier power spectrum EF(ω) via the formula:

EWðaÞ ¼
Z

EFðoÞ ψ̂ðaoÞ
�� ��2do; ð4Þ

where the caret symbol designates Fourier transforms. Equation (4) implies
that if two spectra, EW(a) and EF(ω), exhibit power-law behaviour, then they
have the same power-law exponent β.
In a wavelet-based analysis, the scale invariance of the time series is

reflected by the scaling of the WT power spectrum EW(a) with timescale a
in a form EW(a) ~ a− β. The exponent β is related to the decay of the
corresponding autocorrelation function.40 For β between 0 and 1,
autocorrelation function decays by a power-law. In this case, the mean
correlation time diverges, and the system is regarded as long-term
correlated. For β= 0, the data are linearly uncorrelated on long timescales
and look like “white noise” in the spectrum. The meaning of the wavelet
scalegram is the same as in the case of a classical spectrum—it gives the
contribution to the signal energy at the specific scale (time) parameter a.
This property enables examination and identification of the peaks in
wavelet spectra in the same way the classical Fourier approach does.
In this paper, we chose to apply the standard set of Morlet wavelet

functions as ψa;bðkÞ. The Morlet wavelet41 has proven to have the optimal
joint time–frequency localization, and can therefore be used to detect
locations and spatial distribution of singularities in the time series.42

Ethics Statement
All procedures performed in studies involving human participants were in
accordance with the ethical standards of the institutional and/or national
research committees of South Africa and New Zealand, and with the 1964
Helsinki declaration and its later amendments or comparable ethical
standards. South African study has a research ethics clearance granted by
the Council for Scientific and Industrial Research (CSIR) Research Ethics
Committee (Certificate number: 64/2013, 15 February 2015).

RESULTS
We applied WT spectral analysis to the pUVR time series U(k),
derived from the daily exposure records of school children,
farmers, outdoor workers and a marathon runner from South
Africa, and construction workers and a construction site supervisor
from New Zealand in order to learn the relevant statistical proper-
ties of these series. Time series U(k) consist of the UVR dosimeter
badges counts recorded at time interval k. The recording time step
was Δk= 60 s for the South African data, and Δk= 8 s for the New

Zealand data. An example of daily pUVR records of a construction
worker is given in Figure 1, together with the calculated SED
values for the particular days.
We found scaling behaviour in all our pUVR data. Their WT

spectra are power-law functions of time, and we calculated the
corresponding scaling exponents β as slopes of WT functions from
a log (WT power spectra)–log (times) graphs. Our results show
significant differences in the behaviour of WT power spectra
depending on the duration of an individual’s solar exposure,
distinguishing both between the participants (individuals) inves-
tigated and the activities they performed while the pUVR data
were recorded. Using this approach, we obtained the scaling
exponents β with values close to 0 for the uncorrelated cases, that
is, for individuals with erratic activities with regard to their UVR
exposure, in some of the farmer’s recordings and all of our school
children records. In the case of long-range correlated pUVR data,
for individuals spending longer periods in the sun because of the
nature of their job (e.g., farmers, outdoor workers) or sports
activity (i.e., the marathon runner), the calculated slope was β 40.
Figure 2 shows wavelet power spectra, together with the

corresponding pUVR records, for the two representative cases of
difference in scaling behaviour that we found across our data set:
the uncorrelated case of a schoolchild and the correlated
behaviour of a marathon runner. WT spectra are given in a log–
log form, where the logarithm of EW(t) is given as a function of the
logarithm of the timescale t; real timescale t was extracted from
wavelet scale a following the algorithm given in Torrence and
Compo.43 The slopes of WT functions, used for calculating scaling
exponents β, are represented by straight lines; we only took into
consideration the values of the WT spectra between the minimum
timescale of a= 1 and the statistically meaningful maximum
timescale44 of a=N/5.
Peaks (local maxima) in the WT power spectra that may point to

the existence of characteristic times in sun exposure behaviour
were found in all investigated pUVR records. The peaks are already
visible in Figure 2, but are given in Figure 3 for emphasis. The
characteristic peaks that give periods of characteristic cycles can
be recognized on different timescales: 10–15 min, half an hour
and 1 and 2 h in all of the pUVR data. Additional peaks, at longer
periods of 3–4 h, in long-range correlated cases of individuals with
longer sun exposure were also found (see example in Figure 3).

Figure 1. Examples of five daily pUVR records of a construction worker, taken in New Zealand. The UVR dosimeter badge was attached to the
participant’s safety hard hat. Graph depicts recorded 8 s UV irradiance measures, together with the total integrated SED measure for the
respective days (note that 1 UV index unit is equivalent to 0.025 W/m2 of erythemally weighted UV irradiance). Because of the high density of
data points (i.e., 450 per hour), not all data points will be individually resolved and some will appear to be stacked vertically.
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The above findings demonstrate that WT analysis can
provide two new measures of pUVR exposure: the duration of
exposure, quantified by the slope of WT power spectra, and the
characteristic times of exposure, manifested by the peaks in WT
scalegrams. We extended our analysis to explore its potential in
investigating a specific group’s exposure patterns. To accomplish
this, we grouped individuals of similar population subgroups—in
our data set, groups of outdoor workers and of farmers—to see
whether the analysis gives the same types of results as for any
individual group member. Within the group, we compared
randomly selected individual daily data, recorded on different
days, under different outside conditions, even from different
locations in different countries: the results of our analysis are given
in Figure 4. Because of a small number of individuals, we are
presenting only the basic statistical group measures—the mean,
SD and position of 95% confidence intervals are given for each
group. The results for the group of farmers’ records, consisting of
six individuals, recorded in South Africa, point to a diverse pUVR
behavioural patterns (Figure 4). Farmers’ data span different
types of behaviour: from random behaviour (with β≈0, that is
βF,min = 0.29) to long-range correlated behaviour (with 0oβ≤ 1
and βF,max = 1.14). The group mean WT slope is βF,mean = 0.64 ±
0.31; as the farmers’ data do not cluster, some individual WT
scaling exponents in the group scatter outside of the SD error

Figure 2. Examples of scaling in pUVR records: comparison of daily pUVR records of a school child (a) and a marathon runner (b) during their
usual daily activities with log–log plots of their wavelet spectra (c). The UVR dosimeter badges were attached to the school child’s wrist and
marathon runner’s upper arm. In (c) the straight lines represent linear fits to the wavelet spectra, from which the slopes, that is, exponents β
were calculated. One can discern the uncorrelated exposure behaviour of a school child (with β≈0) and the highly correlated behaviour of a
marathon runner (with β≈1).

Figure 3. Illustration of the existence of characteristic times, or
cycles, in the pUVR time series of a school child and a marathon
runner for the daily records depicted in Figure 2. The vertical lines
indicate peaks in the WT spectra for these two cases that indicate
characteristic cycles of a duration of 10–15 min, half an hour and 1
and 2 h in the school child’s daily pUVR records, and a peak on
longer time interval of ∼ 3 h in the marathon runner’s sun exposure
record.
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interval. To be able to discern group properties in the farmer
population, this group probably needs to be further differentiated
(by place or time of recording and/or nature of work and/or other
parameters). In contrast, the findings obtained for the group of
outdoor workers point to the similarity of pUVR WT results.
Namely, WT power spectra for all members of the group (five
outdoor workers from our data set recorded in South Africa and in
New Zealand) show long-range correlated behaviour, with slopes
β≈1 (and range β

OW,min
= 0.89 to βOW,max = 1.35) and the mean WT

slope βOW,min = 1.06 ± 0.18 Only one individual slope value from
this sample does not fall into the SD error interval. It is important
to notice that the group of outdoor workers shows a similarity in
behaviour even though the individual records were taken under
different conditions and during different types of outdoor work.
The last step in our analysis was a test for further distinction of

pUVR data in cases of seemingly similar daily erythemal UVR
exposure by way of considering scaling measures for individuals
with continual daily exposure, associated with high daily exposure
doses. We found that even if pUVR data correspond to very similar
daily exposure indexes, their long-range correlated behaviour may
still be different. Figure 5 shows the WT scalegrams, together with
the corresponding pUVR records, for the representative cases of
daily pUVR exposures of one construction worker and a construc-
tion site supervisor recorded on the same day. The difference in
slopes of the WT spectra for both cases is visible from Figure 5.
The construction worker’s data (of a total daily exposure of 11.8
SED for the particular day) have the scaling exponent β≈0.8. This is
different from the supervisor’s scaling (with a total daily exposure
of 9.8 SED units for the same day) that is of the so-called 1/f type
(that is, with β= 1). Figure 5 shows how the difference in
individualal behavioural patterns in these two cases stems from
different behaviour on smaller timescales. Namely, on scales
ranging from several seconds to 15 min, the slopes of the two
WT spectra are markedly different, and contribute to the overall
difference in corresponding WT exponents β. This is how, for
the construction worker, the peaks on longer timescales are
somewhat balanced by a random behaviour on smaller timescales
that reduces the value of β, whereas in the case of a construction
supervisor the predominant behaviour is on longer timescales.
The explained difference in sun exposure behaviour is also visible

in the pUVR records given in Figures 5a and b, where a conti-
nuous, but frequently changing exposure pattern of a construc-
tion worker, and a long-term intermittent exposure of a
construction site supervisor are evident. Thus, the WT analysis
helped us reveal differences in personal behavioural patterns
related to the solar UVR exposure that were not visible from the
conventional pUVR measures (daily exposure indexes) and that
are related to the difference in the manner individuals spend their
time outdoors.

DISCUSSION
In this paper, we use the wavelet-based spectral analysis to
investigate and quantify dynamical behaviour of personal solar
UVR exposure records from different groups and to understand
better patterns of personal solar UVR exposure. The advantage of
this method stems from its construction that overcomes problems
of non-linearity or even non-stationarity of natural data series: WT
deduces the typical behaviour, or long-term characteristics of the
analysed records, rather than monitor for linear coincidences of
data values at each time step. In this paper, WT allowed us to
objectively identify two new measures of pUVR behaviour: the
duration of exposure, quantified by the slopes of WT power
spectra, and the characteristic times of exposure, related to the
times of appearance of peaks in WT scalegrams. These measures
allowed us to search for similarities within specific group’s
exposure patterns and to differentiate between sun exposure
behaviours with similar cumulative properties. This is the first
study (to our knowledge) that has shown that pUVR data can be
objectively differentiated or collated for different population
groups.
Our findings show that a scale-invariant behaviour exists in the

analysed pUVR data sets. With an increase in the duration of an
individual’s solar exposure, the behaviour changes from uncorre-
lated, for individuals with erratic activities with regard to their
UVR exposure, to long-range correlated, for individuals spending
longer periods in the sun. The presence of scaling in climate
records have been confirmed in a large number of studies; as data
records extend over longer periods of time, increasing evidence of
long-term trends in the climate systems are observed.33,45,46 These
trends show evidence of persistence in records behaviour, that is,
long periods of one kind of behaviour alternate with long periods
of usually opposite kind of behaviour.47 In the pUVR case, the
existence of strong long-range correlations would suggest that an
individual spends long uninterrupted periods outdoors, followed
by long periods spent indoors. This individual would be exposed
to higher daily UVR doses48 than an individual with uncorrelated
or slightly correlated pUVR series.
We also found multiple peaks in wavelet spectra in all our pUVR

time series, pointing to the existence of characteristic times in
personal sun exposure behaviour. Moreover, we found that these
spectral peaks occur at roughly the same times (or time intervals)
in all our data sets, pointing to a certain level of similarity in sun
exposure behaviour across activities or population groups.
Characteristic peaks at ∼ 15 min, half an hour and 1 and 2 h were
present in all of the pUVR data. In the recordings of longer sun
exposure, additional peaks at longer periods were detected. The
question of whether some of these WT peaks appear as a result of
the influence of daily sun or other atmospheric cycles, rather than
an individual’s voluntary behaviour, was not raised in our analysis.
Further investigation of this issue is required in order to be able to
use WT analysis to better characterize different personal beha-
vioural patterns related to solar UVR exposure.
We further examined the potential of WT analysis to add to our

understanding of a specific group’s exposure patterns—in the
case of our data set, groups of outdoor workers and of farmers.
Our results show similarity in group behaviour of outdoor workers’
records that points to general long exposure to solar UVR (group

Figure 4. Results of the group behaviour WT analysis for pUVR
records in groups of farmers and outdoor workers. Statistical group
measures—mean values (filled squares), SD (error bars) and
positions of 95% confidence intervals (boxes)—are given for each
group, together with the calculated WT exponents β (data, hollow
squares and hollow circles) for each group member. The Figure
shows obtained dissimilarity in behaviour in group of farmers and
similarity in behaviour (clustering of data points) in group of
outdoor workers.
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mean indicates a long-range correlated, the so-called 1/f exposure
behaviour, characterized by scaling exponent β≈1). As the group
of outdoor workers in our data set showed similarity in behaviour
even though individual records were taken under different
conditions and for different types of outdoor work, there may
be potential for future use of WT to build up meaningful
population UVR exposure patterns that could further be used in
epidemiology. This conclusion needs to be to be corroborated on
larger population groups in order to provide better statistics. The
approach could also be tested on other groups that show
similarity in exposure behaviour, such as golfers or gardeners,24

especially for the importance of the knowledge of their group
behaviour from a public health point of view.49

Finally, to examine whether the observed scaling and temporal
patterns in the observed pUVR behaviour could be used to
distinguish pUVR data of individuals with seemingly similar daily
erythemal UVR exposures, we performed an analysis on a subset
of individual records taken on the same day under very similar
outdoor conditions. The recordings in this subset consisted of
continuous personal daily exposures that were associated with
high daily exposure indices and would be considered

indistinguishable by conventional statistical methods. Our method
indeed differentiated the two types of behaviour. In the first type,
there was a highly persistent UVR exposure, characterized by the
slope β= 1 in the WT spectrum, and a presence of a long
characteristic period of ∼ 3–4 h. The second type involved less
intense long-term exposure, with a WT slope 0oβ o1, and an
evident contribution of outdoor behaviour at timescales of o3 h.
We argued that the differences in the WT slopes in these two
cases are probably because of the less pronounced effects of fast
(occurring at a small timescale) changes in the overall sun
exposure behaviour in pUVR data with β= 1.38,50 In the case of
ambient UVR data, it has already been shown that the exponent of
the power-law relationship between the fluctuations of the
solar spectral irradiance versus UVR wavelength at the ground is
consistently close to unity (i.e., that the time series correlations are
of the 1/f type) throughout the day.51 This could mean that after
several hours of persistent daily exposure the 1/f property of the
solar UV flux may become a major influencing factor in the 1/f
behaviour of pUVR records. The question of the critical time
interval of uninterrupted solar exposure sufficient for the “1/f
effect” to occur, the critical exposure duration, remains open for

Figure 5. Comparison of daily pUVR records of a construction worker (a) and a construction site supervisor (b), recorded during the same day
at similar outdoor conditions, with their wavelet power spectra (c). The UVR dosimeter badges were attached to the participant’s safety hard
hat. In (c) the straight lines represent linear fits to the wavelet spectra in the small timescale region (ranging from several seconds to 15 min),
from which the slopes, that is, exponents β were calculated. One can discern that the slopes of WT spectra differ in these two cases, in the
region of small timescales, even if their SED measures are very similar for that particular day. This result indicates different behavioural
patterns of sun exposure—long intermittent exposure of a construction site supervisor and a frequently changing exposure of a construction
site worker.
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further research; this information could help improve prediction
models that rely on the use of ground irradiance data to estimate
individual UVR exposure.52,53

In summary, the scaling analysis based on the wavelet transfor-
mations proved to be a powerful tool in investigation of personal
solar UVR recordings. The analysis offered identification of
characteristic patterns and characteristic intervals in sun exposure
that enables group classification, as well as distinction between
individual UVR exposures, otherwise unattainable by conventional
statistical methods. The nature of these data may be useful in
determining patterns in sun exposure that are known to increase
risk of skin cancers as, for example, intermittent sun exposure is
generally associated with basal cell carcinoma and melanoma,
whereas chronic sun exposure is associated with squamous cell
carcinoma.54
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