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Abstract
Bone regeneration is a tightly regulated process that ensures proper repair and 
functionality after injury. The delicate balance between bone formation and reso-
rption is governed by cytokines and signaling molecules released during the 
inflammatory response. Interleukin (IL)-17A, produced in the early phase of 
inflammation, influences the fate of osteoprogenitors. Due to their inherent 
capacity to differentiate into osteoblasts, mesenchymal stem/stromal cells (MSCs) 
contribute to bone healing and regeneration. This review presents an overview of 
IL-17A signaling and the leading cellular and molecular mechanisms by which it 
regulates the osteogenic differentiation of MSCs. The main findings demon-
strating IL-17A’s influence on osteoblastogenesis are described. To this end, 
divergent information exists about the capacity of IL-17A to regulate MSCs’ 
osteogenic fate, depending on the tissue context and target cell type, along with 
contradictory findings in the same cell types. Therefore, we summarize the data 
showing both the pro-osteogenic and anti-osteogenic roles of IL-17, which may 
help in the understanding of IL-17A function in bone repair and regeneration.
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Core Tip: The immune system closely interacts with the bone system in health and 
disease. Inflammation plays a strategic role in bone homeostasis and turnover. A pro-
inflammatory cytokine interleukin-17 (IL-17) is produced in high amounts after bone 
damage and can influence mesenchymal stem cells’ fate toward early osteoprogenitor 
cells, either as a pro-osteogenic or an anti-osteogenic factor. Although these divergent 
IL-17 roles in bone formation are still not well understood, different conditions of the 
local microenvironment, the extent of inflammation, and the specific nature and stage 
of osteoprogenitor cells can influence the response to this cytokine, affecting the final 
cell differentiation outcome.

Citation: Krstić J, Mojsilović S, Mojsilović SS, Santibanez JF. Regulation of the mesenchymal 
stem cell fate by interleukin-17: Implications in osteogenic differentiation. World J Stem Cells 
2021; 13(11): 1696-1713
URL: https://www.wjgnet.com/1948-0210/full/v13/i11/1696.htm
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INTRODUCTION
The interleukin-17 (IL-17) cytokine was first described in 1993 as a cytotoxic T 
lymphocyte antigen 8 (CTLA8) and was, subsequently, in 1995, reported to share 57% 
of its sequence homology with the herpes virus saimiri gene 13 (HVS13). Both HVS13 
and CTLA8 were shown to costimulate T-cell proliferation by binding to a novel 
cytokine receptor and were named IL-17, vIL-17, and IL-17R, respectively[1,2]. Later 
on, Park et al[3] defined the cellular requirements for the differentiation of naïve CD4 
T-cells into effector T helper cells with the capacity to express and secrete IL-17. This 
resulted in the discovery of a new subset of T helper cells with proinflammatory 
functions, referred to as TH17 cells[4]. Today, IL-17 is recognized as a founding 
member of the IL-17 family that comprises the cytokines IL-17A (initially named IL-17) 
through IL-17F, which were discovered via screening for homologous genes[5]. By 
producing IL-17A and IL-17F, TH17 cells participate in host protection against external 
pathogens and recruit macrophages and neutrophils to the infection site[6,7].

The dysfunctional regulation of TH17 may exacerbate the pathogenesis of multiple 
inflammatory and autoimmune disorders, such as sepsis, pneumonia, systemic lupus 
erythematosus (SLE), rheumatoid arthritis (RA), allograft rejection, and cancer[4,8]. 
Specifically, the six IL-17 cytokines are secreted glycosylated proteins with molecular 
weights of about 20-30 kDa and share 20%-50% of their sequence homology with IL-
17A. IL-17 family members exhibit a conserved protein C-terminus with two intram-
olecular disulfide bridges formed by four cysteine residues. Moreover, IL-17s belong 
to the cystine knot fold superfamily since they dimerize similarly to the nerve growth 
factor subfamily[8-13]. Furthermore, IL-17A and IL-17F form either homodimers or 
heterodimers and are co-expressed by linked genes on chromosome 6[6,14,15]. It is 
well known now that, beyond TH17 cells, many cell types can produce IL-17, including 
almost all innate and adaptive immune cells[4,6].

IL-17 cytokines exert their actions by binding to the IL-17 receptor (IL-17R) family, 
composed of five receptor types (IL-17RA to IL-17RE)[5]. Although its expression level 
varies widely, IL-17R is expressed ubiquitously and is mainly characterized by a 
shared SEF/IL-17R (SEFIR) motif in the intracellular domain and two fibronectin III-
like regions (FN1 and FN2) within the extracellular environment[5,16,17]. In addition, 
all IL-17 isoforms bind to IL-17RA, which forms heterocomplexes with other IL-17R 
subtypes responsible for ligand-binding specificity[8,18].

IL-17A initiates signaling by binding to an IL-17RA/IL-17RC receptor complex. This 
binding triggers the multifunctional adaptor Act1, a U-box E3 ubiquitin ligase 
interaction with IL-17R via the SEFIR domain (Figure 1). Next, the IL-17 downstream 
intracellular signaling is activated via homotypic interactions between the tumor 
necrosis factor (TNF) receptor-associated factor (TRAF)6/transforming growth factor β 
(TGF-β)-activated kinase 1 (TAK1) complex with Act1. This signaling includes nuclear 
factor-κB (NF-κB) and mitogen-activated protein kinases (MAPK) (ERK1,2, p38, and 
JNK). Similarly, the activated IL-17/IL-17R/Act1 complex can signal via the 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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Figure 1 Overview of interleukin-17A signaling. Interleukin (IL)-17A in a dimeric form binds to the cell surface receptor complex comprising IL-17RA and IL-
17RC, which triggers the intracellular interaction with the adaptor protein Act1. Then, tumor necrosis factor receptor-associated factor (TRAF) effector proteins 
associated with Act1: Act1-TRAF6 complex promotes activation of nuclear factor-kB and mitogen-activated protein kinases ERK1,2, p38, and JNK; Act1-TRAF4 
complex induces activation of ERK5; and, Act1-TRAF2/5 complex modulates mRNA stability. For more details, see the text. IL-17: Interleukin-17; TRAF: Tumor 
necrosis factor receptor-associated factor; NF-κB: Nuclear factor-κB.

TRAF4/MEKK3/MEK5/ERK5 axis. Finally, the noncanonical signaling of IL-17A 
involves a TRAF2/5-human antigen R (HuR)-alternative splicing factor (ASF or SF2) 
cascade that results in the control of mRNA stability of IL-17-targeted inflammatory 
cytokine and chemokine genes[5,18-20].

Mesenchymal stem/stromal cells (MSCs) are multipotent stromal cells that were 
first described in the bone marrow (BM) regarding their capacity to support 
hematopoiesis after heterotopic transplantation in a nude mouse model[21,22]. MSCs 
display a spindle fibroblast-like shape and are capable of self-renewal. Moreover, 
when stimulated, both in vivo and in vitro, they can differentiate into several 
mesodermal cell types[23,24]. Moreover, it is now well known that MSCs can also 
differentiate into nonmesodermal lineages, such as hepatocytes, neurons, and 
pancreatic cells, among others[24].

MSCs are defined by standardized criteria for their identification and character-
ization. In 2006, the International Society for Cellular Therapy proposed a set of 
minimum standards to characterize MSCs: fibroblast-like morphology, plastic 
adherence, three mesodermal lineage differentiation capacities (adipocytes, osteocytes, 
and chondrocytes), and specific immunophenotype surface markers[25], whereby 
more than 95% of MSCs should express CD73, CD90, and CD105. Meanwhile, to avoid 
hematopoietic cell contamination, leukocyte markers CD45, CD34, CD14 or CD11b, 
CD19 or CD79α, and HLA-DR should be expressed in less than 2% of the cell 
population. Recently, additional cell surface markers have been identified that ensure 
the isolation of clonogenic MSCs such as STRO-1, CD29, CD44, CD106, CD146, and 
CD27 and epidermal growth factor receptor, insulin-like growth factor (IGF) receptor, 
and nerve growth factor receptor[26].

MSCs are present in almost all adult tissues[27]. Adipose tissue, BM, and dental 
tissue are the preferred sources for preclinical and clinical research[24,28,29]. 
Furthermore, the usage of adult MSCs is not compromised by the biological and 
ethical concerns that surround their embryonic counterparts. Thus, they can be used as 
autologous transplants, which has opened up new opportunities for tissue 
regeneration and bioengineering, as well as for cell-based clinical applications[30-32]. 
Moreover, when transplanted, MSCs do not manifest tumorigenicity, which is an 
advantage compared to induced pluripotent stem cells[33,34].
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Under homeostatic conditions, MSCs are hypoimmunogenic and capable of evading 
immune system recognition. In addition, they express low class I major histocompat-
ibility complex (MHC) molecules and lack class II MHC and costimulatory molecule 
(CD40, CD80, and CD86) expression. These characteristics make MSCs suitable for 
allogeneic transplantation[35,36]. Likewise, MSCs possess remarkable immunosup-
pressive, immunomodulatory, and anti-inflammatory functions, accompanied by 
antimicrobial properties. Thus, MSCs are meaningful candidates to be studied and 
potentially may be used in therapies for fracture healing and bone regeneration[37-40].

THE BONE STRUCTURE AND FUNCTION
Bone is a supportive tissue contributing to locomotion, soft tissue and vital organ 
protection, blood pH regulation, and calcium and phosphate homeostasis. It also 
provides a functional milieu for blood production in the BM and progenitor cell niche 
formation. In this regard, the bone contains both mesenchymal and hematopoietic cell 
compartments[41-43].

Bone tissue is mainly composed of two interrelated compartments: (1) Like 
connective tissue, bone is rich in the extracellular matrix (ECM) and abundant in 
organic collagen fibers (comprising about 90% of the matrix proteins) and inorganic 
hydroxyapatite (a naturally occurring mineral significant for bone reinforcement)[43-
46]; and (2) The cellular components of bone mainly encompass osteoprogenitors, 
osteoblasts, osteocytes, and osteoclasts[45,47,48].

Osteoblasts are differentiated cells originating from BM MSCs. Undifferentiated 
MSCs reside in the periosteum, which covers the bone surface. The osteogenic process 
occurs in sequential events, including MSC recruitment to bone remodeling areas, 
followed by cell proliferation and subsequent lineage commitment[49]. In the 
beginning, MSCs are committed to generating actively proliferating pre-osteoblasts, 
which at this early stage do not produce ECM proteins. Next, cells cease proliferation 
and start to secrete type I collagen, proteoglycans, and other noncollagenous proteins. 
Afterward, the mineralization process occurs with the phosphates released by 
osteoblast-associated phosphatases, which combine with calcium to form hydroxy-
apatite crystals. Once a functional ECM is generated, osteoblasts differentiate into 
osteocytes, long-lived cells with an average half-life of 25 years, embedded within 
lacunae[49].

Interestingly, osteocytes encompass approximately 90%-95% of bone cells and are 
recognized as the principal regulators of bone homeostasis since they contribute to 
bone formation and resorption during bone remodeling. In addition, osteocytes may 
act as sensors for organic and inorganic molecules during mechanical stimuli to 
remodel the environment, thus contributing to the proper maintenance of bone tissue 
functionality[50-55]. On the other hand, osteoclasts are large multinucleated bone-
resorbing cells that originate from the fusion of myeloid precursors of the monocyte/ 
macrophage lineage and participate in bone degradation, bone turnover, and 
remodeling[56,57].

Bone tissue is created by intramembranous ossification or endochondral 
ossification. In the first place, direct ossification occurs in the neuro and viscero-
cranium, flat bones, and in part of the clavicle. It is characterized by MSC-derived 
osteoblast condensation, which causes mature osteoblasts to evolve into osteocytes. 
Meanwhile, indirect endochondral ossification occurs in long bones, vertebrae, the 
skull base, and the posterior skull[58]. This process involves MSCs, which initiate the 
first round of cartilage differentiation and are later replaced by bone tissue, consid-
erably increasing the ability to withstand mechanical compression[59].

Healthy bone is a dynamic organ with a constant balance of fine-tuned bone 
resorption and new tissue generation. It confers bone’s ability to repair itself by 
continuous skeletal adjustment to mechanical forces in varying environmental 
conditions[41,43]. Therefore, impairment in cell differentiation can result in different 
bone pathologies. For example, an imbalance in BM MSC differentiation toward the 
adipocyte lineage, to the detriment of osteoblast/osteocyte generation, may result in 
bone mass loss and bone diseases such as osteoporosis[60,61].

Mechanistically, early osteogenesis stages include the expression of hedgehog 
proteins, Wnt/β-catenin signaling, bone morphogenetic proteins (BMPs), endocrine 
hormones, epigenetic regulators, cytokines, and growth factors. These events implicate 
complex processes of finely regulated and timely orchestrated activation of specific 
transcription factors to express genes that accurately define the osteoblast phenotype
[60,62].
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Runt-related transcription factor 2/core-binding factor subunit alpha-1 (Runx2/ 
Cbfa1) and downstream osterix (OSX) are crucial for osteoblast differentiation. The 
absence of either Runx2 or OSX results in the impairment of skeleton mineralization. 
Moreover, Runx2 is essential for MSC commitment toward the osteogenic lineage[63]. 
Therefore, Runx2 is expressed early during osteogenesis. However, as the differen-
tiation process advances, Runx2 expression is downregulated, accompanied by 
upregulation of OSX and β-catenin with further osteoblast maturation[60,62].

Namely, Runx2 contains a runt DNA-binding domain harbored by several 
enhancers and promoters, including those for the genes encoding alkaline phosphatase 
(ALP), collagen type 1 (COL1), osteocalcin (OC), and osteopontin (OPN). These 
proteins contribute to bone matrix generation and osteoblast maturation. These genes 
are also useful as markers for different osteogenesis stages[64-66]. The time course of 
events indicates that ALP is an early marker of osteogenic differentiation and mineral-
ization in committed osteoprogenitors. In contrast, more advanced osteogenesis stages 
implicate COL1, osteoprotegerin (OPG), and osteonectin expression, while OC and 
OPN are confined mainly to the terminal differentiation phase[62,67-69]. OPG, first 
characterized and named for its protective role in bone remodeling[70,71], functions as 
a soluble decoy receptor for the cytokine receptor activator of NF-κB-ligand (RANKL) 
since it prevents the binding of RANKL to the receptor activator of NF-κB (RANK). 
Therefore, OPG inhibits osteoclastogenesis and protects bone from excessive 
osteoclast-mediated resorption[72].

In turn, osteonectin is a binding-calcium glycoprotein implicated in mineralization 
initiation, promoting mineral crystal formation[73]. Furthermore, OC is vital for bone 
formation and resorption inhibition[74]. Finally, OPN is an integrin-binding glyco-
protein expressed at high levels by osteoblasts at the endosteal surface and regulates 
bone development and bone mass maintenance[75].

Several signaling factors are involved in the activation of Runx2, including 
wingless-type (Wnt)/β-catenin, BMPs, TGF-β1, hedgehog, and (Nel)-like protein type 
1 (NELL-1)[76,77]. The Wnt/β-catenin signaling pathway may regulate osteoblasto-
genesis by modulation of MSC commitment to the osteoblastic lineage. The activated 
Wnt/β-catenin canonical pathway contributes to the induction of osteogenic regulators 
Runx2, distal-less homeobox 5, and OSX, which notably induces MSCs’ progression 
into mature osteoblasts[43,78-80]. Furthermore, Wnt/β-catenin controls bone 
resorption by increasing the OPG/RANKL ratio[81,82]. Wnt5a induces noncanonical 
Wnt signaling pathways, such as the co-repressor complex, through calcium-
calmodulin-dependent protein kinase II-TAK1-Nemo-like kinase signaling, to regulate 
MSC differentiation to osteoblasts by Runx2 induction and inhibition of the adipogenic 
transcription factor PPARγ expression[83,84].

In addition, a large body of experimental evidence unequivocally demonstrates that 
BMP signaling causes multipotent mesenchymal cells to differentiate into the 
osteochondral lineage and regulates the maintenance of postnatal bone and cartilage. 
The abundance of different types of BMPs varies in response to skeletal requirements. 
BMP-2, -4, -6, -7, and -9 are of particular importance in bone formation, as they activate 
BMP-associated Smads (Smad-1, -5, and -8) to induce Runx2 and OSX activation axes, 
while BMP-3 and BMP-13 present exceptions in the subfamily and act as inhibitors of 
osteogenic differentiation[85,86]. Moreover, inhibitor of differentiation (ID) proteins, 
especially ID1 and ID3, are critical effectors of BMP-induced osteoblastogenesis[87].

Furthermore, early-response genes that activate downstream BMP signaling in 
primary BM-MSCs include Dlx2 and 5. In vitro studies demonstrated that Dlx proteins 
mediate the expression of several osteoblast lineage genes, including Runx2, OSX[88], 
and osteoactivin, a positive regulator of bone formation, both in vitro and in vivo[89].

On the other hand, during osteoblastogenesis, inhibitory Smad6 can intracellularly 
inhibit BMP receptors. Furthermore, BMP-Smad1–Runx2 regulates Smad6 expression, 
while Smad6 regulates BMP and Runx2 activity in a negative feedback loop[86,90]. 
Likewise, Noggin, chordin, gremlin, and follistatin, which sequester BMPs and 
prevent binding to cell surface receptors, regulate BMP function during bone 
generation[86,88].

Also, systemic hormones, such as parathyroid hormone, glucocorticoids, estrogens, 
and local growth factors, such as bone TGF-β1/2, IGF, fibroblast growth factor 2 (FGF-
2), vascular endothelial growth factor, prostaglandins, and MAPK signaling molecules, 
regulate MSC osteogenic differentiation[41]. Furthermore, MSC osteoblastogenesis can 
also be induced in vitro by adding a combination of dexamethasone, beta-glycero-
phosphate, and ascorbic acid to the cell culture medium[91].
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IL-17A AND MSCS: THE OSTEOGENIC LINK
Bone homeostasis is a finely regulated process relying on the interplay between the 
immune and musculoskeletal systems[92]. Indeed, the skeletal and immune systems 
share several regulatory biomolecules, including growth factors, proinflammatory and 
inflammatory cytokines, and other signaling molecules[93]. Inflammation plays a 
strategic role in bone homeostasis and turnover in several inflammation-associated 
diseases and events, such as bone fracture healing, periodontitis, erosive arthritis, 
osteoarthritis (OA), chronic rhinosinusitis (CRS), and spondyloarthropathy[92,94].

Several immune cell types (e.g., macrophages, neutrophils, and T cells) infiltrate 
injured bone tissue and regulate new bone formation during normal and dysfunctional 
bone repair and regeneration. In this sense, cytokines such as IL-6, TNF-α, and IL-17A 
positively contribute to the healing process. However, the same cytokines can enhance 
inflammation, triggering dysfunctional bone tissue regeneration and bone-associated 
inflammatory diseases[92]. Thereby, the immune system interacts closely with the 
bone system in health and disease.

By regulating bone regeneration and homeostasis, IL-17 also acts on MSCs’ differen-
tiation ability. MSCs express high levels of IL-17RA as well as the other four members 
of the IL-17R family[95,96], and IL-17A can induce MSC proliferation, migration, and 
differentiation[97]. For example, in mouse BM-MSCs, IL-17 increases CFU-F (colony-
forming unit fibroblasts) average frequency and colony size and cell proliferation, 
mediated by p38 and ERK1,2 MAPKs[98,99]. Moreover, IL-17A induces the motility 
and transendothelial migration of peripheral blood MSCs in vitro, suggesting a 
possible role for IL-17 in the mobilization and recruitment of MSCs to injured tissues
[95,100]. Consistently, IL-17A also induces the gene expression of matrix metallopro-
teases-1 and -13 in MSCs, which potentiates their capacity to degrade collagen and 
invade the ECM[101].

Moreover, IL-17 promotes the immunosuppressive function of mouse BM-MSCs by 
inducing nitric oxide (NO) and programmed death-ligand-1[102]. In addition, it 
enhances human BM-MSC-induced inhibition of T cells, and IL-17A-treated MSCs 
promote regulatory T cells expansion and function, further increasing their 
immunosuppressive effect[103,104].

THE PRO-OSTEOGENIC ROLE OF IL-17
One of the first pieces of evidence that IL-17 may regulate MSC osteogenic differen-
tiation was provided by Huang et al[97]. Primary human MSCs under IL-17 treatment 
responded with increased proliferation and migration alongside activation of the 
TRAF6-ACT1-NADPH oxidase (NOX)1/reactive oxygen species-MEK-ERK MAPK 
pathway axis. Furthermore, IL-17 treatment induced ALP expression and activity with 
subsequent mineralization in cell culture. Moreover, IL-17 induced osteoclastogenesis 
of mononuclear cells in coculture conditions with primary human MSCs by induction 
of macrophage colony-stimulating factor and RANKL in primary human MSCs. Thus, 
IL-17 contributes to bone turnover by modulating osteogenesis and osteoclastogenesis
[97].

The effect of IL-17 on MSCs’ osteoblastogenesis can depend on their inflammatory 
stage or polarization. MSCs display two polarized phenotypes based on the expression 
of the surface marker Toll-like receptor (TLR): TLR4+ MSCs (also called MSC1) and 
TLR3+ MSCs (also called MSC2), with different inflammatory functions[105]. In vitro, 
IL-17 induces MSC2 polarization in mouse-derived MSCs through the 
WNT10b/Runx2 axis, concomitant with increased mineralization rates. Furthermore, 
in a mouse model of ankylosing spondylitis (AS), MSC2 polarization was related to 
new bone formation, and the PBMCs of AS patients with new bone formation 
expressed significantly higher IL-17A mRNA levels than those of healthy donors[106].

Interestingly, osteocytes may enhance the capacity of IL-17 to induce osteogenic 
differentiation of murine BM-MSCs. IL-17 triggers osteoblastic differentiation via the 
activation of AKT, STAT3, and ERK1,2 along with ALP, Runx2, OCN, and COL-1 
expression. The coculture of osteocytes with MSCs under IL-17 treatment leads to an 
increase in IL-6 and IL-1β secretion by both cell types, which mediates the enhanced 
osteogenic differentiation of MSCs. Blocking either IL-6 or IL-1β inhibits IL-17-
mediated activation of AKT, STAT3, and ERK1/2 in MSC. Therefore, IL-17 may 
potentiate MSC osteoblastic differentiation within the bone niche by increasing MSC-
osteocyte interaction, further contributing to osteoblastogenesis[107].
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IL-17A has recently emerged as a mediator of extensive inflammation and abnormal 
bone formation in AS, leading to bony ankylosis. Basal levels of IL-17A in bodily fluids 
(patient serum and synovial fluid) are elevated in patients with AS. Moreover, IL-17 
enhanced ALP activity and mineralization in AS-derived MSC-like primary bone-
derived cells by activating JAK2/STAT3-mediated both Runx2 and C/EBPβ expre-
ssion[108,109]. Furthermore, in a biomimetic human periosteum-derived cell (hPDC) 
model, IL-17 induced osteoblastic differentiation. At the same time, blockage of IL-17 
with the humanized monoclonal antibody bimekizumab suppressed serum-induced 
hPDC osteocommitment in AS patients, as evidenced by Runx2 expression inhibition
[110].

IL-17 also plays a role in CRS neo-osteogenesis, a heterogeneous and multifactorial 
disorder of the paranasal sinus mucosa, which involves bone neo-osteogenesis, 
especially in recalcitrant CRS patients[111]. Levels of Runx2 and IL-17 were increased 
in tissue sections from CRS patients with neo-osteogenesis. Furthermore, IL-17A-
neutralizing antibodies supported the notion that IL-17 mediates Runx2 expression in 
mouse mesenchymal precursor C2C12 cells treated with nasal tissue extracts. Thus, 
these data indicate that Runx2, induced by IL-17A, contributes to new bone formation 
in CRS patients through its effect on osteoblasts’ activity[112].

Furthermore, Ono et al[113] showed that γδT cells promote bone formation by 
producing IL-17A and facilitate bone fracture healing in a drill-hole injured femur 
mouse model. Here, IL-17A was induced in the early phase of bone fracture healing 
and seems to accelerate bone formation by stimulating the proliferation and 
osteoblastic differentiation of mesenchymal progenitor cells. Conversely, bone repair 
impairment in Il17a-/- mice occurs due to decreased osteoblastic-dependent bone 
formation, while osteoclastic bone resorption is not affected[113]. Furthermore, IL-17 
enhances in vitro BMP-2-induced osteoblastogenesis in injury-associated MSCs.

Similarly, IL-17 synergizes with BMP-2 to induce osteoclastogenesis in human MSCs 
in vitro and in vivo. IL-17 dramatically increased matrix mineralization mediated by 
BMP-2 in human MSCs[114]. In a rabbit model, IL-17 enhanced BMP-2-induced 
ectopic bone formation in ceramic scaffolds coated with bisphosphonate zoledronic 
acid (ZOL) by suppression of osteoclasts. Doubled bone volume was observed after 12 
wk of BMP-2 and IL-17 co-delivery compared to only BMP-2 in subcutaneous ceramic 
scaffold implantation. IL-17 induces connective tissue ingrowth and restores BMP-2-
induced vascularization and connective tissue formation inhibited by the ZOL coating
[115].

Dental-derived MSCs, which represent an ideal source for tissue engineering, and 
regenerative and dental medicine[116], also differentiate toward osteoblasts under IL-
17A stimuli. For instance, IL-17 induces the osteogenic-associated proteins Runx2, OC, 
and ALP and mineralization in MSCs derived from dental pulp[117]. Similarly, IL-17A 
induces in vitro osteogenic differentiation in MSCs from human exfoliated deciduous 
teeth (SHED). IL-17 increases cell proliferation in five days of treatment while 
inducing ALP expression on day 14 of cultivation. Moreover, stem cell marker c-Myc 
and Nanog expression were downregulated after IL-17 treatment. This stem cell 
marker inhibition occurred concomitantly with the upregulation of osteogenesis-
associated proteins—such as Runx2, COL1, OPN, OCN, and OPG—along with 
RANKL downregulation, which increased the OPG/RANKL ratio[118].

IL-17 may regulate RANKL expression in murine primary osteoblasts from the 
calvaria bone via JAK2-STAT3 signaling, which depends on cell autophagy in an IL-17 
dose-dependent fashion. Low doses of IL-17 induced autophagy, while high doses 
activated JAK2-STAT 3 signaling, which could be reversed by autophagy induction 
with the mTOR inhibitor rapamycin[119]. Conversely, autophagy inhibition by the 
phosphoinositide-3 kinase (PI3K) inhibitor 3-methyladenine greatly enhanced IL-17-
induced JAK2-STAT3 signaling. Furthermore, high IL-17 levels promoted ALP 
induction and mineralization of osteoblast progenitor cells. This treatment also 
increased the opg and rankl mRNA transcripts levels, and OPG and RANKL proteins 
were found along with a decreased OPG/RANKL expression ratio. Thus, IL-17A, 
depending on the dose, may regulate bone turnover, i.e., osteoblastogenesis/osteoclas-
togenesis balance, by modulating the OPG/RANKL ratio[119].

Furthermore, IL-17A can interact with and potentiate the osteoblastic function of 
other inflammatory factors such as TNF-α. When used in combination, IL-17A and 
TNF-α further enhance ALP activity and matrix mineralization. Moreover, this 
combination synergistically induced the expression of Schnurri-3, a finger protein that 
plays a critical regulatory role in skeletal remodeling[120] and inhibits RANKL 
expression associated with osteogenic induction. Furthermore, IL-17A and TNF-α 
combination increased the type II TNF receptor (TNFRII), which may explain the 
synergistic effects on the osteoblastic differentiation of MSCs[121]. Similar effects of 
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combined IL-17A and TNF-α are observed on fibroblast-like synoviocytes (FLS) 
isolated from RA and OA patients, albeit with different potency[122].

Meanwhile, in OA, simultaneous bone destruction and osteophyte formation were 
observed and related to a reduced joint destruction rate[123]. Namely, FLS are cells of 
mesenchymal origin and are the dominant nonimmune cells in synovial tissues, vital 
elements in defining the stromal environment within arthritic bone diseases[124]. Both 
RA- and OA-derived FLS can perform bone mineralization in vitro and express Wnt5a 
under chemical induction, and IL-17A addition further potentiates differentiation. In 
addition, RA bone explants in ex vivo assays showed that IL-17A alone or in comb-
ination with TNF-α generates a significant decrease in bone volume over the total 
volume (BV/TV) ratio, while in OA bone explants, only the combination decreased 
BV/TV ratio. Besides those specific differences, IL-17A enhances TNF-α-induced 
osteoblastogenesis in both RA and OA-derived FLS[125].

Interestingly, IL-17A switches the differentiation fate of murine mesenchymal 
progenitor C2C12 cells. IL-17A strongly promotes osteogenic differentiation in cells 
cultivated in a myogenic medium mediated by ERK1,2 pathway activation and Runx2 
transcriptional activity[112,126]. Moreover, IL-17A strongly inhibits myogenic 
transcription factor expression and reduces cell migration and urokinase-type 
plasminogen activator expression[127].

Moreover, IL-17A positively exerts osteogenic induction on murine calvaria 
progenitor osteoblastic cells under incubation with osteogenic media, since IL-17A 
further stimulates mineralization, along with mRNA expression of ALP (Alp), OSX 
(Sp7), bone sialoprotein (Ibsp), and OPN (Spp1). Furthermore, IL-17A significantly 
enhances healing and bone tissue formation in a mouse calvaria defect model under 
beta-tricalcium phosphate treatment[128]. Furthermore, IL-17A effectively induces 
osteogenesis in the spontaneously immortalized murine calvaria pre-osteoblast cell 
line MC3T3-E1, a widely used model for studying osteoblast biology[129]. For 
instance, IL-17A, under chemical osteogenic induction, potentiates MC3T3-E1 differen-
tiation towards osteoblastic lineage by activation of PI3K-RAC-β serine/threonine-
protein kinase (AKT2). In turn, AKT2 knockdown makes MC3T3 E1 unresponsive to 
osteogenic induction by IL-17A since Runx2, ALP, OCN, and relative ALP activity and 
mineralization are almost entirely impaired in these cells[130].

Furthermore, IL-17A synergizes with IL-6 to induce ALP activity on osteogenic 
differentiation of MC3T3-E1 seeded on hydroxyapatite while increasing the expression 
of OPG and reducing the expression of RANKL, thus increasing the OPG/RANKL 
ratio and suggesting the potential to reduce osteoclastogenic response[131]. The main 
aspects of IL-17A-induced osteogenesis are summarized in Table 1.

Other IL-17 family members also have the potential to regulate MC3T3-E1 
osteoblastogenesis. Indeed, IL-17F induced osteogenic differentiation by enhancing 
ERK1,2/C/EBP-β/Runx2 activity[132]. This observation was confirmed by Croes et al
[114] in an in vitro study where human MSCs increased ALP activity in a dose-
dependent response to IL-17.

In addition to osteoblastogenesis promotion, IL-17A conversely affects adipogenesis 
and chondrogenesis in MSCs. Indeed, IL-17A inhibits the adipogenic differentiation of 
human MSCs and enhances lipolysis of differentiated adipocytes via upregulation of 
cyclooxygenase-2 expression and a subsequent increase of anti-adipogenic prosta-
glandin E2[133]. Noh[134] discovered that IL-17 inhibits human BM-MSC adipogenesis 
and promotes osteogenesis by upregulating the leptin-JAK/STAT pathway. Also, IL-
17A may inhibit adipogenic differentiation of 3T3-L1 cells, a model for adipocyte 
differentiation, by suppressing pro-adipogenic PPARγ, C/EBPα, and transcription 
factor Krüppel-like factors (KLF)-15 expression, while enhancing anti-adipogenic KLF2 
and KLF3 expression[135].

Moreover, IL-17A inhibits TGF-β3-induced chondrogenic differentiation of human 
MSCs, mediated by impaired protein kinase A activity with a consequent reduction in 
SRY-type HMG box9 (SOX9) phosphorylation transcriptional activity. As a conse-
quence, chondrogenesis-associated type II collagen (COL2A1), aggrecan (ACAN), type 
X collagen (COL10A1), and ALP are dose-dependently suppressed by IL-17A[136].

THE ANTI-OSTEOGENIC ROLE OF IL-17A
In contrast to the aforementioned pro-osteogenic function of IL-17A, several studies 
indicated an anti-osteogenic function of IL-17A (Table 2). IL-17A inhibits proliferation 
and migration and the osteogenic differentiation of healthy periodontal ligament stem 
cells through ERK1,2 and JNK MAPK[137]. Similarly, IL-17 suppresses human 
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Table 1 Interleukin-17 promotes osteogenesis: Summary of the main literature data

Cells Differentiation effects, differentiation markers, signaling, 
and transcription factors Ref.

Primary human BM-MSCs ALP, mineralization; TRAF6-ACT1-(NOX)1/ROS-MEK-ERK 
MAPK

Huang et al[97]

Mouse-derived BM-MSCs Mineralization; WNT10b/RUNX2 He et al[106]

Mouse-derived BM-MSCs ALP, RUNX2, OCN, and COL-1; AKT, STAT3, and ERK1/2 Liao et al[107]

Human MSC-like primary bone-derived cells ALP, mineralization; JAK2/STAT3,  RUNX2, and C/EBPβ Jo et al[109]

Human biomimetic human periosteum-derived cell RUNX2 Shah et al[110]

Mouse mesenchymal precursor C2C12 ERK1/2; RUNX2 Khalmuratova et al[112], and 
Kocić et al[126]

Human BM-MSCs BMP2 synergy, mineralization Croes et al[114]

Human dental pulp-derived MSCs ALP and mineralization; RUNX2 and osteocalcin Yu et al[117]

Human exfoliated deciduous teeth-derived MSC ALP; RUNX2, COL1, OPN, OCN, and OPG Sebastian et al[118]

Primary mouse progenitor osteoblastic cells OPG and RANKL Wang et al[119]

Human BM-MSC Enhances TNF-α-induced osteogenesis; ALP and mineralization; 
Schnurri-3

Osta et al[121]

Human fibroblast-like synoviocytes from AR and OA Enhances TNF-α-induced osteogenesis; RUNX2 and BMP2 Osta et al[125]

Murine calvaria progenitor osteoblastic cells Mineralization; ALP, OSX, bone sialoprotein, and OPN Kim et al[128]

Murine calvaria pre-osteoblast cell line MC3T3-E1 ALP and mineralization; RUNX2 and OCN; PI3K/AKT2 Tan et al[130]

Murine calvaria pre-osteoblast cell line MC3T3-E1; 
Seeded on hydroxyapatite

Synergizes IL-6, ALP; OPG Sritharan et al[131]

BM: Bone marrow; MSC: Mesenchymal stem/stromal cell; ROS: Reactive oxygen species; OA: Osteoarthritis; TNF-α: tumor necrosis factor α; IL: 
Interleukin; ALP: Alkaline phosphatase.

Table 2 Interleukin-17 inhibits osteogenesis: Summary of the main literature data

Cells Differentiation effects, differentiation markers, signaling, and transcription factors Ref.

Human periodontal ligament 
stem cells

Reduces mineralization and ALP activity,  and OC; Activates ERK1/2 and JNK Đorđević et al
[137]

Human periodontal ligament 
stem cells

Reduces ALP activity, and RUNX2, SP7, and OCN expression; Inhibits ERK1/2, p38, and JNK 
signaling

Jian et al[138]

Murine calvaria progenitor 
osteoblastic cells

Reduces ALP, mineralization, and nodule formation Kim et al[139]

Murine-derived BM MSC IκB kinase-NF-κB dependent catenin degradation Chang et al
[141]

Human bone mesenchymal stem 
cells

Reduces mineralization; Inhibits RUNX2, ALP, and OPN expression; Wnt inhibition by sFRP1 
increased expression

Wang et al
[142]

Murine calvaria progenitor 
osteoblastic cells

Reduces mineralization and ALP activity; Inhibits OC expression; Inhibits Wnt signaling by 
increasing sFRP1 and suppressing  sFRP3 expression

Shaw et al
[143]

Murine calvaria progenitor 
osteoblastic cells

Increases miR-214 and RANKL expression Liu et al[150]

BM: Bone marrow; MSC: Mesenchymal stem/stromal cell; NF-κB: Nuclear factor-κB; ALP: Alkaline phosphatase; OPN: Osteopontin; OC: Osteocalcin.

periodontal ligament stem cell osteogenic differentiation (by reducing ALP activity, 
Runx2, SP7, and OCN expression). However, in that case, inhibition of MAPK 
activation (ERK1,2, p38, and JNK) was involved[138].

IL-17A also inhibits osteogenic differentiation of calvaria osteoblast precursor cells 
upon chemical induction in vitro, as evidenced by reduced ALP expression, mineral-
ization, and nodule formation. Accordingly, IL-17 significantly delayed the in vivo 
filling and repairing calvaria defects[113,139]. Furthermore, NF-κB reduces 
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osteoblasts’ capacity for in vivo osteogenic differentiation in a murine periodontal 
infection model, where IL-17A induced NF-κB transcriptional activity in osteoblasts 
and osteocytes in vitro[140]. Consistent with this, IL-17A inhibits murine MSC 
osteogenic differentiation via IκB kinase (IKK)-NF-κB dependent b-catenin 
degradation. Moreover, IKK-NF-κB inhibition greatly enhances MSC-mediated bone 
formation in vivo[141]. Consequently, healthy BM-MSCs treated with IL-17 showed 
impaired osteogenic differentiation when induced with a chemical osteogenic differen-
tiation medium. In addition, IL-17A inhibits Runx2, ALP, and OPN expression and 
mineralization.

Besides osteogenic inhibition, IL-17 treatment provoked Wnt factor inhibition and 
increased the Wnt signaling pathway inhibitor sFRP1, a member of the secreted, 
frizzled-related protein, which mediates IL-17 effects[142]. Similarly, Shaw et al[143] 
demonstrated that IL-17A inhibits calvaria osteoblastic differentiation in vitro by 
inducing sFRP1 and suppressing the expression of sFRP3, a decoy Wnt receptor that 
may stimulate differentiation through a b-catenin-independent pathway[144]. 
Interestingly, a study in psoriasis patients indicated that bone loss and low bone 
formation were correlated with increased serum IL-17A levels. Indeed, two mouse 
models with chronic IL-17A-mediated skin inflammation showed bone loss and 
impaired osteoblast activity, whereas keratinocytes, γδT cells, and innate lymphoid 
cells expressed IL-17A, therefore systemically inhibiting both osteoblast and osteocyte 
function.

Furthermore, IL-17 treatment in vivo and in vitro inhibited osteoblast differentiation 
due to Wnt signaling downregulation, while specific IL-17A blocking antibodies 
ameliorated bone loss and Wnt signaling[145]. Another potential mechanism linking 
IL-17A to Wnt signaling reduction could be sclerostin (SOST) upregulation. SOST 
inhibits the Wnt signaling pathway and bone generation[146]. In coculture conditions, 
SOST overexpression in adipose-derived MSCs (ADSCs) promoted CD4 T cell differ-
entiation toward Th17 cells expressing IL-17A, concomitantly with ADSCs’ impaired 
osteogenesis and enhanced adipogenic differentiation capacity. Exogenous IL-17A 
further enhanced ADSCs, overexpressing SOST osteogenic inhibition capacity and 
promoting adipogenic differentiation[147].

Additionally, IL-17A plays a role in secondary osteoporosis in SLE patients. Human 
BM-MSCs and SHED transplantation recover bone density and ameliorate structure 
reduction in MRL/lpr mice. The transplantation of human MSCs restores impaired 
functions and the bone metabolism of recipient mouse BM-MSCs/osteoblasts. The 
Murine MRL/lpr model resembles human SLE disorder, with clinical manifestations 
due to a Faslpr mutation that promotes self-reactive lymphocytes’ survival[148]. MSCs’ 
effects mainly rely on suppressing abnormal BM IL-17A production in recipient MRL/
lpr mice, as further confirmed by systemic IL-17A blockage by specific antibodies. The 
authors suggested two potential mechanisms to explain the MSCs’ transplantation 
effects: MSC integration and differentiation into functional osteoblasts contribute 
directly to bone regeneration, or proinflammatory cytokines can impair bone 
regeneration. Therefore, MSCs’ anti-inflammatory and immunomodulatory effects 
may regulate IL-17A production by immune cells at bone defect sites[149].

It has recently been reported that microRNA mir-214 mediates the capacity of IL-
17A to inhibit primary murine calvaria osteoblast differentiation in vitro[150]. MiR-214 
inhibits osteogenesis in vivo and in vitro[151], and IL-17A increases osteoblast miR-214 
production and RANKL expression, promoting osteoclast differentiation in coculture 
conditions due to the reduction of the OPG/RANKL ratio. Furthermore, knockout 
miR-214 in osteoblasts decreased in vivo osteoclastogenesis. Interestingly, AS patients 
who manifest bone loss have elevated IL-17A and miR-214 Levels in the serum and 
synovial fluid, indicating their potential diagnostic value in AS[150].

CONCLUSION
Bone tissue formation and regeneration are highly susceptible to microenvironmental 
factors that regulate the delicate balance between bone synthesis and resorption. An 
inflammatory response may influence the proper local cell differentiation after a bone 
injury to accurately regenerate the tissue. Inflammation precedes bone repair and is 
crucial for bone healing. As a proinflammatory cytokine, IL-17A is produced at high 
levels, and its release after bone damage can influence MSCs’ fate into early osteopro-
genitor/osteoblast cells, which further contributes to bone regeneration and full 
functional recovery. Despite IL-17’s capacity to drive the osteogenic commitment of 
MSCs, it can also function as an anti-osteogenic factor that causes bone loss. Although 
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these divergent IL-17A roles in bone formation are still not well understood, various 
conditions arising from the local microenvironment, the magnitude of inflammation, 
and the specific nature and stage of osteoprogenitor cells can influence the direc-
tionality of IL-17A’s function, resulting in specific differentiation outcomes.

From a molecular point of view, it is possible to speculate that two mutually 
antagonistic signaling pathways in osteogenesis may influence the capacity of IL-17 to 
function as either a pro-osteogenic or anti-osteogenic factor. In this sense, we 
hypothesize that, depending on the cell source and culture conditions, the activation of 
the pro-osteogenic Wnt pathway or the anti-osteogenic NF-κB signaling can regulate 
the cell decision in response to IL-17[84,152]. Thus, if NF-κB prevails, elevated levels of 
Wnt inhibitors, sFRPs, and SOTS expression are promoted and may trigger b-catenin 
degradation, whereby IL-17 is acting as an anti-osteogenic factor. Conversely, if cells 
exhibit low NF-κB activity, the Wnt pathway can freely operate, and IL-17, in 
cooperation with this signaling, may function as a pro-osteogenic factor. Accordingly, 
one potential candidate for controlling NF-κB signaling is IL-10[153], also produced by 
MSCs[154]. The levels of IL-10 in cell culture may influence NF-κB signaling activity
[155] and, thereby, drive IL-17’s effect on MSC osteogenic fate. However, this 
hypothesis needs to be experimentally confirmed.

Moreover, the dual roles of IL-17A might result from species-specific characteristics 
of MSCs and MSC-derived osteoblasts due to the interplay of various microenviron-
mental issues that condition IL-17A’s effects or mode of action at the cellular level. 
Although it is clear that IL-17A profoundly affects osteogenic differentiation, further 
standardized studies are necessary to determine how osteogenic differentiation is 
either positively or negatively regulated and when IL-17 acts as a pro-osteogenic or 
anti-osteogenic cytokine. Finally, a deep understanding of the precise inflammatory 
and tissue conditions may help design better therapeutic strategies for IL-17A-
associated bone diseases.
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